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RESUMEN 
Construimos un con junto completo de ejes simetricos para el campo de desplazamientos dentro de una barra elastica, homo­

genea, isotr6pica y semi-infinita con condiciones de frontera semi-rigidas sobre la superficie curva de la barra y condiciones de 
frontera libre de esfuerzo sobre la superficie plana de la misma. 

P ALABRAS CLAVE: Cilindro circular, autofunciones. 

ABSTRACT 
We have constructed a complete orthonormal set of axi-symmetric eigenmodes for the displacement field inside an elastic, 

homogeneous and isotropic semi-infmite cylindrical rod with semi-rigid boundary conditions on the curved surface of the rod 
and stress-free boundary conditions on the flat surface capping the rod. 

KEY WORDS: Circular cylinder, eigenmodes. 

INTRODUCTION 

The problem under consideration belongs to a class of 
problems with two level surfaces. This geometry compli­
cates the computation due to mode conversion at the 
boundaries. For rigid or stress-free surfaces both longitu­
dinal and shear waves undergo mode conversion at these 
surfaces and such problems are in general nonseparable. 
However, if at one of the surfaces semi-rigid boundary 
conditions are imposed, the problem is still separable. 
Semi-rigid boundary conditions mean that: 

1) The normal component of displacement vanishes and 
2) The tangential component of stress vanishes. 

For this reason we have chosen these boundary condi­
tions on the curved surface of the rod. The end of the rod 
(flat surface) satisfies stress-free boundary conditions. The 
eigenmodes thus obtained form a complete set and may be 
used to solve problems even with stress-free or rigid 
boundary conditions. 

We have introduced the semi-rigid boundary conditiov 
because it is one of three possible boundary conditions that 
render self-adjoint the differential operator D((}) in 

D(o)u = c;V(\7 · u)- C?Vx(Vxu) (1.1) 

where CP and Cs are the constant P and S wave velocity 
(Sahay and Capri, 1988). The other two boundary condi­
tions yielding self-adjointness are stress-free and rigid. The 
semi-rigid boundary condition is not only of academic in­
terest. It also corresponds to interesting physical situations, 
for example, when one has a soft medium abutting against 
a stiff material. At a surface with semirigid boundary 
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conditions only reflection without mode-conversion oc­
curs. Thus, for a problem with many level surfaces, it is 
possible to use this boundary condition to suppress mode 
conversion. 

We have also solved the corresponding exterior prob­
lem for a cylinder imbedded in a elastic halfspace (Sahay 
and Capri, 1989). Using that result plus our present work 
makes it possible to solve the elastodynamic problem for a 
cylinder imbedded in an elastic half-space with different 
elastic parameters. For these problems the sources that can 
be handled must feature the same cylindrical symmetry as 
the imbedded cylinder. Thus, we may have cylindrical 
sources, ring sources, or even a point or line source on the 
axis of the cylinder. This may provide a sensible starting 
point for constructing models for geological problems such 
as magmatic intrusion. It should also be of interest to vari­
ous engineering applications such as concrete piles imbed­
ded in the ground. Kim and Steele (1989) have studied 
longitudinal waves in a semi-infinite cylinder with stress­
free boundary conditions by expanding the solution in 
terms of eigenfunctions for a semi-rigid infinite cylinder. 
The complete set of eigenfunctions constructed here may 
be appropriate for their problem because the stress-free 
boundary condition at the end surface capping the semi­
infinite cylinder has already been incorporated. 

Throughout this discussion we are assuming that the 
medium is homogeneous and isotropic. 

In section 2 we present the mathematical formulation. 
The results are presented in section 3. Since the normal­
ization and completeness for this problem are not entirely 
straightforward, we sketch them in section 4. The final 
section contains the conclusions. 
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FORMULATION OF THE PROBLEM AND 
DECOMPOSITION OF THE WAVE EQUATION 

Consider a displacement field u(r, t) in the interior of a 
semi-infinite homogeneous, isotropic circular rod whose 
surfaces are specified by 

~ r~a, ~9< 27t, ~z< oo. 

The displacement field satisfies the elastic wave equation 

c;v(V ·u)-C_?V'x(Vxu)= ~~y . (2.1) 

The boundary conditions satisfied at the cylindrical surface 
of the rod are as follows: 

1) At the curved surface of the rod r=a we impose semi­
rigid boundary conditions. These read 

crn~l r=a =0 

<1n I r=a =0 

(2.2) 

(2.3) 

(2.3) 

2) At the flat surface of the rod z=O we impose stress-free 
boundary conditions. These read 

<1.a I z=o =0 

cr •• I •=o =0 

(2.5) 

(2.6) 

(2.7) 

We are interested in finding time-harmonic solutions since 
a general time dependence can be constructed from these 
by superposition. Thus, we set u(r,t) = u(r)e·i01 and replace 
this in equation (2.1). This wave equation now reads 

(2.8) 

where the operator D(a) is defined in equation (1.1). As 
stated in the introduction, the boundary conditions (2.2) -
(2.7) plus the radiation condition render this differential 
operator self-adjoint. Thus, we are guaranteed the exis­
tence of a complete set of eigenmodes. 

To solve equation (2.8) we decompose the displace­
ment field u by introducting the Lame potentials (lj>, 'If, X) 
via ... 

u = vq, + Vxz"' + t Vx V'xzx (2.9) 

where z is a unit vector in the z- direction and l is a con­
venient length scale factor. Equation (2.8) now decouples 
into three scalar Helmholtz equations 
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(V'2 + K;)lj> = 0 

(V2 + K_?)'l' = 0 

cvz + K_?)x = o 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Since the boundary conditions show cylindrical symmetry, 
the problem is essentially two-dimensional and therefore 
we have dropped the derivatives with respect to e. In terms 
of potentials, the boundary conditions read: 

(J ~I r=a= -J.L( a;"' -1 Ira r"' )I r=a= 0 

O"rzlr=a= J.L[2araz'l>+ tar(2a;x- V2x>]lr=a= 0 

(2.14) 

(2.15) 

(2.16) 

<1 rzlr=a= J.1[2ara.lj>+ tarc2a;x- Y'2x>]l z=o= 0 (2.17) 

<1 zelz=o= -J.L(araz'l')]l z=o= 0 (2.18) 

a ··I •=o= { "-Y'2~~>+ 2J.1[ a;q,+ ta. ca;x- Y'2x> ]}I •=o= o . 
(2.19) 

The scalar potential 'I' decouples completely from the 
other two potentials and its solution may be displayed in­
mediately. 

VI= AJo(kr)cosf3z where k ~ Ks , (2.20) 

and p is defined further down by equation (2.25). We still 
have to satisfy the boundary condition at r=a. This condi­
tion forces the separation constant k to be discrete. 

The potentials II> and X remain coupled through the 
boundary conditions. Each of these potentials may be ex­
pressed as a product of a Bessel function or else an expo­
nential function in the variable z. Since there are no singu­
larities at ths origin, only the ordinary Bessel function JQ is 
permitted. Thus, the general solutions are of the form: 

lj> = J 0 (kr)(Asinaz+Bcosaz) for k~KP, (2.21) 

and 

x= Jo(kr)(CsinPz+DcosPz) for k ~ K. 

where 

(2.22) 

(2.23) 

(2.24) 

(2.25) 



and 

(2.26) 

Eigenmodesfor semi-infinite cylinder 

where x,. are the zeroes of J!fx). The values of a., ~. r, and 
A for discrete values of k {that is, for~) are henceforth 
written as a.,., ~ ... r,. and A,.. We now set I equal to 1/k,.. 

Here k is simply a separation variable whose possible val­
ues are again determinded by the boundary conditions at 
r=a. Imposing the boundary conditions at r=a yields: 

The classification given above leads to four classes of 
solutions. These are displayed and discussed in the next 
section. 

Jl( ka) = 0 (2.27) RESULTS 

The allowed values of k are 

k=k,.=x,.fa (2.28) 

The properly normalized eigenmodes are listed below. 
We list the potentials as well as the displacement fields. In 
the following 9 denotes a Heaviside function. 

Mode 1 

Mode2 

Mode3 

[u?>J-(1) -u, 

[

k,.J1 (k,.r){-<~~- k;)sin a.,.z + 2a.,.~,. sin~ .. z} l 
A<1> { 2 2 2 9(Kp-k,.) 

a.,.J0 (k,.r) (~,. -k,. )cosa.,.Z+2k,. cos~,.z} 

[ <I>]-2 
1t 2[cr:~.2 k2)2 4k2 A ] 2 A = 4coa.,.a pn- ,. + ,.a.,.p,. 10 (k,.a) 

[
cp<2>]=A(2)J (k r)[2k,.~,.cosa.,.z ]e(K -k) (2) o n 2 2 . p n 
X (~,.- k,. )sm~,.z 

[ u~2)]-(2) -u, 

[ 
cp<3) ] (3) 
X(3) =A lo(k,.r)9(Ks-:n)9(k,.-Kp)x 

x[ 2k,.~,.(~~-k;)exp-r,.z ] 

(~~ -k;)sin~,.z-4k;r ,.~,.cos~,.z 

(3.1) 

(3.2) ~ 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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(3.9) 

Mode4 

[ ~::~]=A (4) lo(k,.r)[(A~ + k;)exp-(r ,.z)]o(k,.- K,) 
X 2k,.r,.exp-(A,.z) 

(3.10) 

[
u <

4
> J (4) u:<4> =A o(k,.-K,)x 

[ k,.J1 (k,.r){-<~ +k;)exp{-r ,.z)+2r ,.A,. exp{-A,.z)}l 
X { 2 2 2 } r ,.10 (k,.r) -(A,. +k,. )exp{ -r ,.z) + 2k,.exp( -A,.z) 

(3.11) 

We have explicitly written an expression for the 
Rayleigh mode (Mode 4), but this mode will in general be 
absent since the wavenumbers k, are discrete and thus can­
not simultaneously be a Rayleigh wavenumber (Kr) which 
is a root of the characteristic equation 

(3.13) 

Thus, the Rayleigh mode will exist only for very special 
values of the material constants. 

The self-adjointness of the differential operator guar­
antees that these modes form a complete set. Nevertheless 
we indicate an explicit proof of this assertion in the next 
section where we also discuss the normalization. 

NORMALIZATION AND COMPLETENESS 
RELATION 

The eigenmodes are normalized in the following manner: 

where the inner product is defined by: 

< u(m) (k,. ,ro), u(m') (k,.· ,ro') >= Ioodz Ia rdr[ u~m) (r,z;k,.,ro) 

(m')( ··k ') (m)( ·k ) (m')( •k ')] -'4 2) u, r,z, ,.·,ro + u, r,z, ,.,ro u, r,z, ,.·,ro , . 

Here m and m' label the four possible modes. If the 
Rayleigh mode is present these labels run from 1 to 4. If 
the Rayleigh mode is absent they run from 1 to 3. As 
stated earlier, the wavenumbers k0 are discrete and are 
given by k0 =x.Ja where X 0 is the nth zero of the Bessel 
k0=x0/a function J1. The z integration involved in the nor­
malization is exactly the same as in the exterior problem 
previously discussed (Sahay and Capri 1989) and there­
sult is the same yielding a delta function in (ro-ro'). Thera­
dial integration involves terms of the form 
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(3.12) 

both of which are equal to .fJg(k,.a)o,.,,.·· The orthogo­

nality in the mode labels m and m' follows automatically. 
Thus modes 3 and 4 are orthogonal to each other as well 
as to modes 1 and 2 due to their non-overlapping ranges in 
the wavenumbers. Modes 1 and 2 also happen to be mutu­
ally orthogonal. 

The completeness relation required is explicitly written 
as: 

L Lfdroufm>(r;k,.,ro)u~m>(r';k,.,ro) = o;))(r- r') 
m 11 

(4.3) 

The order of integration over ro and summation over n 
may be interchanged. This changes the limits on the ro in­
tegration and leaves the limit on the summation over n un­
restricted. As a consequence the ro integration may again 
be handled in exactly the same manner as in the exterior 
problem (Sahay and Capri, 1989). This produces there­
quired delta (unction in (z-z'). 

The unrestricted summation over n leads to two differ­
ent series, namely: 

_1_ ~ l 0 (k,.r)lo(k,.r') or 
a2 L.J J 2 (k a) 

" 0 " 

_1_ ~ lt (k,.r )It ~k,.r') 
a 2 L.J J 2 (k a) 

" 0 " 

In both cases the summation is over the zeroes of J 1• Thus, 
the first of these sums is a Dini series and the second is a 
Fourier-Bessel series (Watson, 1952). Both of them pro­
duce the desired delta function, namely 1/ro(r-r'). 

CONCLUSION 

The eigenmodes obtained here together with those ob­
tained for the exterior problem (Sahay and Capri, 1989) 



are sufficient to compute the Green's function for any 
problem with a cylindrically symmetric source. This al­
lows one to solve wave propagation problems in elastic 
media for such situations as a cylindrical rod vertically 
imbedded in a half space of a different material. However, 
the source must be axisymmetric. For the eigenfunctions 
obtained, the boundary condition imposed on the curved 
surface of the rod is semi-rigid; yet the contact between the 
rod and the rest of the half space may be welded because 
these eigenfunctions form a complete set for the geometry 
described. 
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