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Resumen

La transformada de Hough es una herramienta 
ampliamente utilizada para identificación de 
alineamientos, pero el método de votación 
utilizado usualmente en esta transformada 
presenta serios problemas cuando las 
alineaciones no son exactas. Proponemos un 
método de votación basado directamente en 
intersecciones en el espacio de Hough, que 
es más eficiente y soluciona los problemas 
mencionados; el método propuesto también 
da un método directo para cuantificar cada 
alineamiento. El método intersectivo puede 
obviar el uso de espacios de Hough divididos en 
celdas acumuladoras, y trabajar directamente 
sobre cúmulos de intersecciones, de manera que 
todo el proceso de identificación de alineamientos 
puede ser automatizado. Un ejemplo sintético 
que representa una aplicación geofísica de 
la transformada de Hough, identificación de 
alineamientos inexactos en presencia de ruido, 
es usado para ilustrar el método propuesto y para 
discutir otras aplicaciones. Un metodo opcional 
de ponderación de los datos puede ser usado 
para tomar en cuenta posibles incertidumbres en 
éstos. Tanto para alineamientos exactos como 
inexactos, el método intersectivo da mejores 
resultados que el método tradicional
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Abstract

The Hough transform is a widely used tool 
for alignment identification, but the voting 
scheme usually used in this transform presents 
serious problems when alignments are not 
exact. We propose a voting scheme based 
directly on intersections in Hough space, 
which is more efficient and solves the above 
mentioned problems; the proposed scheme 
also provides a straightforward way of 
quantifying each alignment. The intersective 
approach can even dispense with gridded 
Hough spaces and accumulator cells, through 
direct clustering of intersections, so that the 
whole alignment identification process can 
be done automatically. A synthetic example 
representing a geophysical application of the 
Hough transform, identification of inexact 
alignments in the presence of noise, is used 
to illustrate the proposed method and to 
discuss further applications. An optional data-
weighting scheme takes into account possible 
uncertainties in the data. For both exact and 
inexact alignments, the intersective method 
yields better results than the traditional one.
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Introduction 

The Hough Transform is a widely used tool in 
many applications ranging from detection and 
analysis of alignments in point distributions 
to image analysis and computer vision (e.g. 
Illingworth and Kitler, 1988; Hart,2009; 
Shapiro and Stockman, 2001; Wikipedia, 
2012). Originally meant to detect alignments 
of points or objects along straight lines (Hough, 
1959), it has been extended to detect other 
kinds of alignments (Duda and Hart, 1972; 
Ballard, 1981); we will restrict our treatment 
to detection of straight lines. 

 The usual, or traditional, Hough Transform 
(HT) (Hough, 1959) determines the presence 
of alignments of points in the physical, or 
observational, space, based on “votes” cast by 
each point onto accumulator cells in the Hough 
space (this process will be reviewed below). 
However, this voting scheme presents serious 
problems when the alignments are not perfect, 
and results in confusing Hough space diagrams 
when a large number of alignments is being 
considered.

For many geophysical applications, such as 
identifying alignments in earthquake epicentral 
(or hypocentral section) distributions, the 
main problem with the HT is that events are 
not perfectly aligned. Misalignments can occur 
because of location errors, but the main source 
of misalignment is that geophysical alignments 
do not occur along perfect zero-width straight 
lines. Hence, their curves in Hough space do not 
intersect at one point, and their intersections 
are spread over some region.

O’Gorman and Clowes (1976) proposed a 
method which uses the local gradient direction 
of image intensity to approximate the angles 
of lines, but this approach is appropriate for 
lines consisting of neighboring pixels and is not 
appropriate for sparsely populated alignments, 
like most in geophysical applications.

Fernandes and Oliveira (2008) improve 
the voting scheme by looking for clusters of 
approximately collinear points (or pixels) in 
observational space and casting votes using 
a Gaussian elliptical kernel oriented according 
to the direction of the line that best fits each 
cluster. This method is complicated because 
it carries out the search for lines largely in 
observational space. Other methods for im-
proving the Hough transform are found in 
Kiryati et al. (1991), Li et al. (1986), and 
Furukawa and Shinagawa (2003).

We propose a new straightforward voting 
scheme which can be used to obtain much 
cleaner and easy to use accumulations in 
Hough space, or to dispense altogether with 
accumulator cells.

The traditional Hough transform

Here, we will briefly review some basic concepts 
of the HT, mainly to introduce our notation and 
to define terms that will be repeatedly used, 
as well as to point out characteristics of the 
usual HT that will be improved by our proposed 
approach.

The HT, as proposed by P.Hough (1959), is 
based on the representation of straight lines 
occurring in physical 2D (x, y) space by points 
in a 2D parameter space, the Hough space. 
The parameterization most commonly used 
is that proposed by Duda and Hart (1972), 
which represents each straight line in the 
physical space by a point in the (q, r) Hough 
space, where r is the shortest distance from 
the origin to the line (measured along the r 
line, which is a straight line perpendicular to 
the original one and passing through the (x, y) 
origin), and q is the angle between the r line 
and the X axis (Figure 1). The usual ranges of 
these parameters are 0 ≤ q ≤ p and -∞ < r < 
∞ , where r is considered negative if the line 
passes below the origin.

The (q, r) parameters are related to the 
a and m parameters of the usual y=a+mx 
representation by

 
θ=

−arctan 1
m  (1)

and

 r = a sin (q) (2)

The line y = a + mx goes through the point 
(0, a) and makes an angle a with the X axis; 
perpendicular to this line and passing through 
the origin is a line with length r which makes 
an angle q with the X axis.

A point (xi , yi ) in the X, Y plane can be 
considered as the locus through which pass 
an infinite number of straight lines, each 
characterized by an angle q and a distance r, 
according to 

 r = xi cos (q) + yi sin (q) (3)
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and this family of lines corresponds to points 
along the curve defined by equation (3) in the 
Hough (q, r) space.

For two points, (xi , yi ) and (xj, yj ), there is only 
one line common to both, and hence only one 
common point where the two corresponding 
curves in the Hough (q, r) space intersect. For 
any number of points, in the physical space, 
their (q, r) curves intersect at as many points 
as there are pairs of (x, y) points, but all points 
along a straight line will intersect at the same (q, 
r) point. Thus, significant straight alignments, 
i.e. those with many aligned elements, are 
identified as points in the space where many 
curves intersect.

The traditional HT then identifies the 
alignments using the following scheme. The 
(q, r) plane is discretized into “accumulator” 
cells each of Dq x Dr size, and each (xi , yi) 
point “votes” through its corresponding curve 
(3) increasing by one the content of each 
cell traversed by the curve. Finally, cells with 
large values (where large numbers of curves 
coincide) are chosen, either numerically or 
visually from a color-coded representation, as 
representing straight lines corresponding to 
alignments in physical space. The number of 
votes in a cell, which we will denote by q, is 
a measure of the number of points in the line 
defined by the cell parameters.

This traditional scheme works well when 
alignments are perfect, but when alignments 
are not perfect, as in most cases dealing with 

geophysical data, the accumulator cell map is 
distorted, so that it may be impossible to get 
a sufficiently accurate identification. We will 
now present an illustration of the problem and 
discuss its general causes.

To illustrate this point, let us consider a set 
of 60 points (which could represent epicenters 
or other geophysical features) distributed over 
the plane shown in Figure 2 as:

•Line 1: 9 events along y = 0.300 + 0.900x (at 
random x values), corresponding to point 
qL1 =131.987°, rL1 = 0.223 km in Hough space,

•Line 2: 9 events along y = 0.700 - 0.400x (at 
random x values), corresponding to point 
qL2 = 68.199°, rL2 = 0.650 km,

•42 events distributed randomly with 
uniform probability over the plane.

The random events, more than twice 
the aligned ones, representing noise were 
included in order to have a distribution in which 
alignments would not be obvious, and could test 
the capabilities of each method. Noise is always 
present in geophysical observations, and the 
example distribution can very well represent a 
typical case of epicentral distribution.

The HT of this set, using cells Dq = 1.5º 
by Dr = 0.015 km, is shown in Figure 3. The 
brighter cells correctly identify the two lines, 
although none of them attained the expected 
q=9 incidences, due to the actual location of 
the cells and to numerical approximations 

Figura 1. Definition of the q and r parameters 
that characterize a straight line. The line 
y=a+mx goes through the point (0,a) 
and makes an angle a with the X axis; 
perpendicular to this line and passing through 
the origin is a line with length r which makes 

an angle q with the X axis.
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Figure 2. First sample set of points in 
observational space; the set includes 
two subsets of perfectly aligned points.

Figure 3. Accumulator cells in Hough space corresponding to the HT of the first sample set of points

(seven decimal places in x and y); the 
maximum corresponding to Line 2 is spread 
over several neighboring cells. The identified 
lines are Line 1: qL1 = 132.000°, rL1 = 0.208 km, 
y = 0.208+0.900x, and Line 2: qL2 = 69.000°, rL2 = 
0.643 km, y = 0.689-0.384x. Thus, we see that 
the HT works reasonably well for a set of points 
including some “perfect” alignments, although 
the precision is always limited by the size of 
the cells. 

Now let us slightly distort the alignment 
by adding Gaussian variations from exact 

alignment, having zero mean and standard 
deviation 0.02 km, to the points in both 
lines (Figure 4). The sizes of the symbols are 
proportional to optional weights discussed later. 
It should be noted that small departures from 
alignment can cause, for points that are close 
together, large changes in the angle of the line 
through them that result in intersections that 
locate far from the other intersections of the 
line; however, for distant points the angle does 
not change very much and intersections locate 
close to the location of the original line.
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Figure 4. Second sample set of 
points in observational space; 
the set includes two subsets of 

imperfectly aligned points.

Figure 5. Accumulator cells in 
Hough space corresponding to 
the HT of the second sample set 
of points. Note that maximum 
values have decreased from 
those in figure 6, and there are 
now many cells with relatively 

high values.

The HT, shown in Figure 5, is now quite 
complicated, there are more cells with relatively 
high q, but the maximal numbers have 
decreased. The overall difference between high 
and low values is less than it should be. There 
are now many candidates for alignments, and 
the transform is incapable of distinguishing 
which are the high values which correspond 
to true, but noisy, alignments.The problem, of 
course, is that curves corresponding to points 
along a given line, but not exactly on it, do 

not intersect at a single point, and some of 
these curves may cross in different cells, which 
complicates the inherent ambiguity in using 
cells. When intersection points are located near 
the border(s) of a cell, they will be distributed 
among several cells, so the HT results depend 
on the actual location of the cells. If larger 
cells are used, to ensure that all intersections 
fall within the same cell, this results in less 
precise results, since parameter values can 
only be determined within ±Dq/2 and ±Dr/2. 
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If smaller cells are used, the probability of 
having one alignment spread over several cells 
increases, and, most important, large values in 
neighboring cells cannot be used to determine 
the correct parameter values, because of the 
main flaw in the voting method of the HT: the 
HT cannot distinguish between lines that cross 
within a given cell and lines that just pass 
through it.

For the HT voting method, if q lines intersect 
within a given cell, a minimum of 2q incidences 
will occur within the 8 surrounding cells (for 
typical curvatures); in fact since (3) can be 
written as r = a sin(q + b), where a= +x yi i

2 2  
and b =  arctan (xi / yi), the absolute value of 
its slope cannot be larger that a, so that for 
points distributed all over the physical space 
most of these 2q+ incidences will occur within 
neighboring cells having the same r value. The 
resulting high values, which correspond to non-
intersecting lines, cannot be distinguished, a 
priori, from those from intersecting lines. If 
one tries to determine where the intersections 
should be by averaging over neighboring cells, 
the average will include both intersections 
and simple traversals, and is essentially 
meaningless.

Thus, it is clear that for non-exact 
alignments, like those associated with 
geophysical observations, a new voting method 
is needed.

The Intersective Hough Transform

Intersective voting

Since we are interested in the intersections of 
the (q, r) curves, not on the curves themselves, 
we propose voting directly with the curve 
intersections. This we will call the Intersective 
Hough Transform (IHT)

From equation (3), the cosenoids for points 
(xi , yi) and (xj , yj ) intersect at qij such that

xi cos (qij) + yi sin (qij)= xj cos (qij )+ yj sin(qij )

so that

 
θij

i j

j i

x x
y y

=
−

−
arctan

 (4)

and the corresponding is given by

rij = xi cos(qij ) + sin (qij)= xj cos(qij)+ yj sin(qij)
 (5)

We will vote by increasing the value only 
for cells within which fall the intersection 
coordinates (qij , rij).

Figure 6 shows the accumulator cells from 
intersective voting for the same point set of 
Figure 2, using, for illustration purposes, 
the same cell sizes as for the HT (as will be 
explained below, the IHT works better with cells 
much smaller than those for the HT). Note that 
there are only two cells with large values, and 
a comparison with Figure 3 shows how much 
clearer straight-line identification is with the 
IHT. Also, the quantification of the alignments 
is much more reliable and straightforward, 
since there is no noise from lines that do not 
correspond to intersections.

Voting with intersections also results in 
much better definition of cells corresponding 
to lines, because an alignment of p points, 
which results in q ≤ p HT votes (q = p only if 
the alignment is perfect and all curves cross 
within the same cell), will result in q ≤ p (p-1) / 
2 IHT votes, a number which grows very fast 
compared to p for p > 3; compare the q (color) 
scales in Figures 3 and 6.

It is for noisy data that the IHT proves even 
more advantageous, because it allows better 
definition by using smaller cells. After a run with 
large cells to identify the approximate location 
intersection clusters for each alignment, much 
smaller cells can be used; then intersections 
will be spread among many cells as shown in 
Figures 7 and 8, but this is now no problem, 
since these cells can be combined to correctly 
identify the alignment.

Let qmn be the number of intersections 
falling in the cell located in column m and row 
n, and let L be the set of indices of a group of 
(neighboring) cells containing all or most of the 
intersections from a given line (the group may 
easily be chosen interactively, as in Figure 8, 
or automatically). The total value assigned to 
the alignment is

 
q qL mn

m n L
=

∈
∑

( , )  (6)

and the alignment parameters can be estimated 
as

 
q qL

L
m
c

mn L
L

n
c

m n Lm n L
mnq

q r
q

r q= =
∈∈
∑∑1 1,

( , )( , )
    

  
  (7)
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Figure 6. Accumulator cells in 
Hough space corresponding to 
the IHT of the first sample set of 
points. Note that only two points 
are clearly significant, and that 
their values are much higher 

than those of Figure 6. 

Figure 7. Accumulator cells 
in Hough space corresponding 
to the IHT of the second 
(misaligned) sample set of 
points, for small cells with Dq = 

4º and Dr = 0.01km.

where qm
c  and rmc  are the and r values 

corresponding to the middle of the cells in 
column m and row n, respectively. Thus, cell 
sizes for the IHT can be smaller than for the 
HT, and their location is not as critical.

Figure 8 shows a close-up of the cells having 
contributions from the example alignments, 
and the rectangles, chosen interactively, 
contain the cells which are used to estimate 
the alignment parameters. The left picture 
corresponds to intersections for line 1, which 
yield the very good estimates qL1 = 131.840º, 
rL1 = 0.222km, with qL1 = 34, that correspond to 

line y = 0.299 + 0.895x. From the selected cells 
in the picture on the right, parameters for the 
second line are estimated as qL2 = 68.212º and 
rL2 = 0.648km, with qL2 = 42, which correspond 
to line y = 0.698 - 0.400x. The (cyan) diamond in 
each picture indicates de estimated (q, r) value 
for each line, while the (blue) circle shows the 
true value. 

The estimated alignments are plotted in 
Figure 9 together with the true ones; it is clear 
that estimated is almost indistinguishable from 
true.
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Figure 8. Close-up of the accumulator cells used 
for determining the values of the parameters 
of lines 1 (top) and 2 (bottom). The rectangles 
contained the cells used, the determinations are 
shown as diamonds, and the true values are 

indicated by circles

The cluster intersective hough transform

Accumulator cells can be dispensed with, 
by directly identifying clusters of (qij, rij) 
intersection points and using their centers of 
mass (or expected values) to estimate the 
parameters of straight lines in the space. We 
will call this the Cluster Intersective Hough 
Transform (CIHT).

A cluster is a set of points all of which are 
within some Dq and Dr of another member of 
the set. These proximity criteria are chosen 
so as to optimize results for each particular r 
range and misalignment level; for the example 
shown here Dq = 1.4º and Dr = 0.0175km.

The cluster approach has the further 
advantage that the Hough space coordinates 
used for estimating the parameters of a 
given cluster are the actual values for each 
intersection belonging to the cluster, not the 
average values for some cell. We work with a 
list of instersection locations, instead of with a 
matrix of accumulator cells. Thus, once the set 
L of index pairs belonging to a given cluster 
has been determined, the parameters of the 

corresponding alignment can be estimated 
directly as:

 
qL

i j L
=

∈
∑ 1

( , )  (8)

the total number associated with the cluster, 
and

 
q qL

L
ij

i j L
L

L
ij

i j Lq
r

q
r= =

∈ ∈
∑ ∑1 1

( , ) ( , )
,     

 (9)

where qij and rij are the intersection values from 
equations (4) and (5).

An additional advantage of this approach 
is that practical uncertainty estimates of the 
determined parameters can be calculated from 
the standard deviations of the intersection 
parameters. In what follows, the error margins 
indicated correspond to one standard deviation.

Figure 10 shows close-ups of the (automatic) 
cluster determinations for our example 
noisy alignments. The diamonds indicate 
the locations of the estimated parameters, 
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Figure 9. Data points and align-
ments; straight (red) lines are 
those identified using the IHT, 

dashed lines are the true lines

where the short horizontal and vertical lines 
indicated the neighboring criteria (the same 
for both alignments) and crosses represent the 
intersections.

For Line 1, the estimated parameters are: 
qL1 = 131.830 ± 2.566º, and rL1  0.221 ± 0.014 km, 
with qL1 = 33, which correspond to the line y = 
0.297 ± 0.0009 + (0.895 ± 0.065)x. For Line 2, the 
estimated parameters are: qL2 = 68.649 ± 0.995º 
and rL2 = 0.655 ± 0.009 km, with hv = 18.382, qL1 
= 21, which correspond to the line y = 0.704 ± 
0.015-(0.391 ± 0.020)x.

The resulting alignments are shown in 
Figure 11, together with (and for all practical 
purposes indistinguishable from) the true 
alignments.

A fortuitous alignment of the randomly 
positioned events is shown as a dashed line in 
figure 11.

Weighted Voting

The concept of weighted voting is an optional 
feature of the IHT and the CIHT, and can also be 
applied to the HT. It should be emphasized that 
weighted voting is not essential for intersective 
voting.

Usually the quality or reliability or 
representativity is not homogeneous for 
a given set of data, and this is always the 

case for geophysical data. For epicentral or 
hypocentral locations the goodness or reliability 
depends on many factors, such as the signal to 
noise ratio, the seismographic coverage, the 
character, impulsive or emergent, of seismic 
phase arrivals, etc.; because of this, locations 
of large earthquakes are usually more reliable 
than those of small earthquakes. Most location 
programs give estimates of inversion residuals 
and location quality or uncertainty. Also, large 
earthquakes that break large areas of a fault 
may be considered to be more representative 
of the fault.

Thus, weights can be assigned to data in 
order to ensure that results depend heavily 
on good data, while poor quality data can be 
made less important, or even irrelevant. So, 
let us suppose that each datum in physical 
space is assigned a weight, for the i’th point. 
Weights can take any values, but using weights 
in the [0, 1] range allows a straightforward 
interpretation of results. If no weighting is 
desired, then weights can be given all the 
same value (unity by preference).

For the data along the lines in the example 
set, weights have been assigned depending on 
the size of the mislocation errors, while non-
aligned events have been assigned random 
weights. Data points physical space are 
plotted, from Figure 4 on, with symbol sizes 
proportional to their weights.
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Figure 10. Close-up of the clusters used for 
determining the values of the parameters 
of alignments 1 (top) and 2 (bottom) in the 
example of imperfectly aligned data. The 
crosses represent the used intersections 
(sections of the cosenoid curves are shown for 
illustration purposes only; they are not used in 
the analysis), the parameter determinations 
are indicated by diamonds, and the circles show 

the locations of the true values.

Figure 11. Data points and alignments; 
straight (red) lines are those identified using 
the CIHT, dashed lines are the true lines. The 
dashed (green) line is an example of fortuitous 

alignment.
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For the HT, instead of increasing by one the 
value in each accumulator cell the i’th curve 
crosses, the value is increased by the weight .

For both the IHT and the CIHT, the vote of 
each intersection, (qij , rij) can be weighted as

 
w w wij i j=

 (10)

so that intersections involving data with zero 
weight will have zero weight themselves, 
while intersections involving data having equal 
weights will have the same weight as each of 
the data.

For the IHT, Let wmn
c  be the sum of the 

weights of the intersections falling in the cell 
located in column m and row n, and let L be 
the set of indices of a group of (neighboring) 
cells containing all or most of the intersections 
from a given line. The total value assigned to 
the alignment is

 
w wL mn

c

m n L
=

∈
∑

( , )  (11)

and the alignment parameters can be estimated 
as

q qL
L

m
c

mn
c

m n L
L

L
n
c

mn
c

m n Lw
w r

w
r w= =

∈ ∈
∑ ∑1 1

( , ) ( , )
,     

 (12)

where qm
c
 and rmc  are the q and r values 

corresponding to the middle of the cells in 
column m and row n, respectively.

For the CIHT, if L is the set of indices of 
intersections belonging to a given cluster in 
Hough space, the alignment parameters can 
be estimated directly as:

 
w wL ij

i j L
=

∈
∑

( , )  (13)
the total weight associated with the cluster, 
and

 
q qL

L
ij ij

i j L
L

L
ij ij

i j Lw
w r

w
r w= =

∈ ∈
∑ ∑1 1

( , ) ( , )
,     

  
  (14)

where qij and rij are the intersection values 
from equations (4) and (5).

For weights all equal to unity, equations 
(11) to (14) are equivalent to equations (6) 
to (9).

When using weights, both qL and wL 
can be used to have two slightly different 
characterizations or gradings of the estimated 
parameters, and the wL / qL ratio evaluates the 
relative quality of the data actually used for 
parameter identification.

Actually, the IHT and CIHT determinations 
shown above were done using weights, and the 
corresponding estimates are: wl1 = 29.31 and 
wL2 = 31.44 for the IHT, and wL1 = 29.31 and wL2 = 
16.21 for the CIHT.

Conclusions

The Intersective Hough Transform (IHT), 
based on voting directly with the intersections 
of the cosenoids corresponding to each pair 
of points in observation space, yields a much 
clearer transform, where each non-zero value 
is significant. The IHT allows (much) smaller 
accumulation cells that can be grouped 
together to yield better estimates than those 
from the traditional Hough transform (HT). The 
Cluster Interceptive Hough Transform (CIHT) 
works without accumulator cells and allows 
estimating the uncertainty in the determination 
of each line; the CIHT can be completely 
automated.

Trials using synthetic data sets show that, 
for exact alignments, both IHT and CIHT 
give almost exact determinations, generally 
better than those from the traditional HT, 
even in the presence of noise consisting of 
large numbers of randomly located points. For 
inexact alignments the number of coinciding 
or clustering intercepts decreases according to 
the how much the locations depart from exact 
alignment; in some of these cases, and when 
random points are many, fortuitous alignments 
of random points may have total values larger 
than those of the desired alignments, but usually 
these are still recognizable. In all cases IHT 
and CIHT alignment identification performance 
is superior to that of the traditional HT.
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