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Resumen

Se tomaron en consideración distintos aspectos 
de algunas técnicas computacionales para 
el análisis AVOA (Amplitud Versus Offset y 
Azimut), para la composición de fracturas, en 
particular: utilizando amplitudes en lugar de 
coeficientes de refección, suavizando los datos 
sísmicos y el método de la estimación numérica 
para calcular la dirección. Se estimó un nuevo 
método de cálculo y se indica un nuevo método 
suavizado. Se compararan distintos métodos 
de cálculo en los datos sintéticos de superficie 
de reflección, con y sin ruido. Se obtuvieron  
propiedades de los métodos numéricos, 
dependientes de conjuntos distintos de los 
azimut y los offset. Se muestra una superioridad 
del nuevo método.

Palabras clave: AVOA, medio HTI, anisotropía 
sísmica, caracterización de yacimientos 
fracturados.

Abstract

Different aspects of computational techniques 
for AVOA analysis (Amplitude Versus Offset 
and Azimuth) for fracture characterization are 
considered, in particular: using amplitudes 
instead of reflection coefficients, smoothing 
seismic data, and numerical methods for 
estimation of fracture directions. A new 
computational method and a new filter for 
smoothing are suggested. The different 
computational methods are compared in 
synthetic reflection surface data with noise, 
and without noise. Properties of the numerical 
methods in dependence on different sets of 
azimuths and offsets are obtained. It is shown 
a superiority of the new method.

Key words: AVOA, HTI medium, seismic 
anisotropy, fracture-reservoir characterization.
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Introduction

The analysis of azimuthal variation in reflection 
coefficients, or AVOA analysis (Amplitude 
Versus Offset and Azimuth), is widely applied 
for detecting and mapping highly fractured 
zones with azimuthally-oriented vertical cracks 
(Mallik et al., 1998; Jenner, 2002; Sabinin & 
Chichinina, 2008). The AVOA techniques are 
based on the Rüger (1998) approximation 
for the reflection coefficients in HTI medium, 
and give principal symmetry directions of HTI 
medium.

Here, the computational aspects of AVOA 
techniques are considered, namely, applying 
amplitudes instead of reflection coefficients, 
smoothing the amplitudes, an incidence 
angle estimation, methods for obtaining the 
symmetry-axis angle, synthetic data for testing 
techniques, and a numerical experiment for 
investigating properties of the techniques. 
A new computational method for obtaining 
the symmetry-axis angle and a new filter 
for smoothing are suggested. All considered 
techniques are compared in synthetic 
anisotropic seismic data with noise, and 
without noise. The suggested new technique 
proved better than the others.

Background

The methodology of AVOA analysis is based on 
the concept of azimuthal anisotropy caused for 
the most part by parallel vertical fractures. It 
leads to the azimuthal anisotropy of amplitudes, 
in particular, to azimuthal variation in reflection 
coefficients. Let a fractured reservoir be 
represented by a model of a transversely 
isotropic medium with horizontal symmetry 
axis (HTI medium). The PP-wave reflection 
coefficient R at the interface (or at the reflecting 
boundary) between weakly anisotropic HTI 
media (or between an isotropic medium and 
an anisotropic HTI medium) is defined by the 
approximate formula (Rüger, 1998):

 R(q, f)= A + B (f)sin2 q + C(f)sin2q tan2q,  
  (1)

where q is the incidence angle, and f is the 
source-receiver-line azimuth with respect to 
the coordinate axis x. The term A is the normal-
incidence reflection coefficient

 A Z Z= ( )2∆  (2)

where Z VP≡ ρ | | is the vertical P-wave 
impedance, VP||  is the vertical velocity (or 
velocity in the isotropy plane) of the P-wave, 

r is density, D denotes the difference between 
the values of a parameter below and above the 
reflecting boundary, and the bar ... indicates 
average of these values. V VP P

| | =  in the 
isotropic media.

The coefficient B(f) is a so-called AVO 
gradient, which can be written (Rüger, 1998) 
as

 B(f) = Biso + Bani cos2(f-f0), (3)

where f0 is the angle of the symmetry axis with 
the x--axis. The term Biso is the AVO-gradient 
isotropic part (equal to the AVO gradient for 
isotropic media), and Bani is the anisotropic part 
of the AVO gradient.

The coefficient C(f) can be written (Rüger, 
1998) as,

 C(f) = a+b cos4(f-f0) + g sin2(f-f0)cos2(f-f0), 
  (4)

where α ≡ V VP P
|| ||/ ( )2∆ , β ε= 1

2
( )V∆ , and 

γ δ= 1
2

( )V∆ .

Above, Thomsen-style anisotropy parame-
ters e(V), and d(V) are negative for HTI media, 
and they are equal to zero for isotropic media.

The main problem of AVOA analysis is to 
estimate the symmetry-axis angle f0 from 
surface seismic data of amplitudes using 
numerical techniques.

The techniques of AVOA are based on 
equations (1) - (4). Note that equation (1) 
is intended for calculation of reflection coe-
fficients, while in real data, one operates 
with amplitudes of reflected waves, not with 
reflection coefficients. This brings some pro-
blems which are discussed in the next section.

Using amplitudes instead of reflection 
coefficients

While the background of AVOA analysis is 
based on Rüger’s equation for the reflection 
coefficient (1), in real data, AVOA analysis 
should use signal amplitudes. It is true that 
the amplitude is not equal to the reflection 
coefficient. Moreover, no picked instantaneous 
amplitude (sample) in the signal can be used 
instead of the reflection coefficient because the 
signal changes its form during propagation for 
many reasons. It seems that one should use an 
integral amplitude characteristic of the signal 
which adequately corresponds to the reflection 
coefficient. Let’s call this characteristic simply 
by amplitude and denote it as P.
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The estimated value of f0 is very sensitive 
to the definition of P, especially for data with 
noise. I suggest the following procedure for 
definition of P which gives good and stable 
results. The procedure calculates an average 
value of a signal envelope in a time window. 
In calculating the envelope, the Fourier 
transform of this signal is used: F = F++ F-, 
where F is spectrum, F+ is the part of spectrum 
corresponding to positive frequencies (w≥0), 
and F- is the part of negative frequencies. The 
envelope of the signal is given by the absolute 
value of inverse Fourier transform of the 
spectrum with double F+, and F-≡0 (Sheriff & 
Geldart, 1983).

The sign of envelope is positive; therefore 
this approach is applicable only to seismograms 
with the constant sign of reflection coefficient 
in dependence on offset.

For data with noise, the envelope is noisy, 
too (see Figure 1). Therefore, smoothing is 
necessary.

For smoothing, an algorithm of discrete 
transformations of wavelet by filters is applied. 
Four symmetric filters are constructed for it: 
the low-pass (h0) and high-pass (h1) analysis 
filters, and the low-pass (h2) and high-pass 
(h3) synthesis filters. The right-hand part of h0 
consists from the filter derived by Abdelnour 
& Selesnick (2004). The left-hand part of h0 is 
symmetric to it. That is

    h0({-n,...,n})={b,b,-a,a,b,b,a,-a,c,
                           -a,a,b,b,a,-a,b,b}, (5)

where a M M b a= = =/ , / ,32 2 2 4 , and 
n = 8. The central value is c = 1-M.

The high-pass analysis filter is constructed 
by formula h1 (i) = (-1)i h0 (n-i+1) for i ≠ 0, and 

h1 (0) = 0. The synthesis filters are calculated 
by formula h2 (i) = (-1)i h1 (i), h3 (i) = (-1)i h0 (i), 
see (Abdelnour & Selesnick, 2005). The central 
values are h2 (0) = c and h3 (0) = 0.

The smoothed signal is obtained by the 
decomposition algorithm; see Figure 2 (WSBP, 
2012).

Figure 1. A signal with noise (thin line) in time, and 
its envelope.

Figure 2. The 3-stage decomposition algorithm.

The input signal is x(j), j=1,…,m, m>>2n. It 
is decomposed into low and high components 
lo1(j) and hi1(j) in the first stage:
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In the next stages (s = 2,…, S), the each low 
component los-1(j) is decomposed by the same 
analysis filters.

After all stages of decomposition finishing, 
the stages of applying the synthesis filters are 
fulfilled in reverse order (s=S, S-1,…,1):

 lo j h i lo i j h i hi i js s
i n

n

s
i n

n

−
=− =−

= + + +∑1 2 3( ) ( ) ( ) ( ) ( )∑∑ =, ,...,j m1 

              
lo j h i lo i j h i hi i js s

i n

n

s
i n

n

−
=− =−

= + + +∑1 2 3( ) ( ) ( ) ( ) ( )∑∑ =, ,...,j m1

            lo j h i lo i j h i hi i js s
i n

n

s
i n

n

−
=− =−

= + + +∑1 2 3( ) ( ) ( ) ( ) ( )∑∑ =, ,...,j m1 .

The output signal y (j) is obtained finally:

 y(j) = lo0(j)p, 

where the fitting amplitude coefficient p can 
be approximately estimated by the formula p 
= 1+0.057S, where S is the number of stages.

The advantage of this variant of discrete 
transformation algorithm in comparison with 
(WSBP, 2012) is the absence of shift functions 
in it due to applying the fully symmetric filters 
(i=-n,…,n).
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It must be noted that the algorithm gives 
unsatisfactory results at the edges of the signal 
because of truncating the filters in 2n edge 
points. Therefore, it is necessary m>>2n.

The result of smoothing the signal of Figure 
1 by the 3-stage algorithm is presented in 
Figure 3. The smoothness of resulting curve 
increases with increasing S. Also with increasing 
S, the algorithm slightly deforms the resulting 
impulse in comparison with the parent impulse 
without noise. Optimum in the smoothness and 
in the conservation of form is observed at the 
value S = 3.

The limits of time window for calculating P 
with the help of envelope can be chosen by 
different ways. I use the following way. From 
the envelope of signal e(t), the maximum em and 
nearest local minimums, left el and right er, are 
calculated. The left limit of the time window is 
set in the point where e = el + 0.15(em-el), and 
the right limit – where e = er + 0.15(em-el), see 
vertical lines in Figures 1, 3. Obviously, this 
algorithm correctly works only with smoothed 
signals.

Equation (1) should be rewritten for using 
the amplitudes. If the source and the receivers 
are at the earth surface, then the amplitude of 
reflected PP-wave can be expressed as 

 P c RPg ini= 2 ,

where cg is the coefficient of geometrical 
spreading (divergence) from source to 
reflection point for this wave, cg= cg (q, f), 
Pini is the amplitude of the source (the initial 
amplitude), and R is the reflection coefficient, 
R = R (q, f) in the equation (1).

The amplitude for the normal-incidence 
wave can be written as 

 P c APg ini0 0
2= ,

where cg0 is the normal-incidence coefficient 
of geometrical spreading, which does not 
depend on (q, f), and A is the normal-incidence 
reflection coefficient, A = const, see equations 
(1) - (2). Then the reflection coefficient can be 
expressed as 

 R A
c P
c P
g

g

= 0
2

2
0

.

Therefore the equation (1) for the reflection 
coefficient R transforms into the following 
equation for the amplitude P:

 rgP(q, f) = P0 + mB(f)sin2 q + mC(f)sin2q tan2q,  
  (6)

where m = P0/A, and rg ≡ (cg0 / cg)
2. This equation 

should be used in the AVOA techniques instead 
of (1).

Note that cg can be expressed as cg = c(q, 
f)/r in 3D space, where r is a half of travel 
path from source to receiver, and c depends 
on the direction of wave propagation (for 
isotropic media, c = const). In assuming a 
weak anisotropy, one may assume a weak 
dependence of geometrical spreading on 
incidence angle: c ≈ const for a given source-
to-receiver line with azimuth f. Then, for a 
homogeneous medium above the reflecting 
boundary,

 r
c
c

r
zg

g

g

= = =0
2

2

2

2 2
1

cos θ
, (7)

where z is the normal-incidence ray path, and 
cg0 ≡ c / z. It is the approximate formula for 
divergent correction.

Also for multilayered media, the expressions 
for divergence correction can be found from 
Newman (1973). A practical methodology for 
the P-wave geometrical-spreading correction 
in layered azimuthally anisotropic media can 
be found from Xu & Tsvankin (2004).

The incidence angle estimation

In the case of n isotropic layers above the 
reflecting boundary, one can obtain the 
incidence angle q = qn from a solution of the 
following non-linear equation for a:

Figure 3. The signal with noise (thin line), the 
smoothed signal (thick line), and the envelope of 

smoothed signal.
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 x a zV
a V
i i

ii

n

0 2 2
1 1

=
−=

∑ , (8)

where x0 is the half of offset, zi is the thickness 
of i-th layer, Vi is the velocity in i-th layer, and 
sin (qn) = aVn. For calculating the geometrical 

spreading, the travel path r z
a V
i

ii

n

=
−=

∑
1 2 2

1
.

In the case of the reflecting boundary being 
the lower boundary of anisotropic layer, the 
problem is more complicated because the last 
layer is anisotropic, and the velocity Vn depends 
on qn in it and is not known beforehand.

The problem can be solved by Sabinin 
(2012). An advantage of his method is that the 
value Vn in the anisotropic layer is unnecessary 
for calculating angle qn and path r. However, it 
uses additionally the impulse from the upper 
boundary of anisotropic layer what complicates 
the technique. It gives results not sufficiently 
better than the method (8). Therefore, I use 
the simple method (8) here with setting an 
approximate value of Vn.

The methods for estimation of symmetry 
axis angle by AVOA

Usually, 3D seismic data used in AVOA analysis 
are received from a system of receivers and 
sources spacing in nodes of a rectangle grid 
at the surface. The symmetry axis angle 
is calculated for a small square (for a bin) 
including a node of the grid, by using seismic 
traces which have the Common Middle Point 
(CMP) located in this bin. If such traces are 
few, then neighbor bins are combined into 
a superbin, and calculations are made for 
it. Therefore, a preliminary stage of the 
estimation is an extraction of seismic traces of 
the superbin from the seismic data for taking 
them into consideration.

For numerical methods of estimation of 
symmetry axis angle, one can use equation (6) 
as in Rüger’s form:

 T* = a + (b* + ct)s + (d* + e*t + ft2)s2/(1-s), (9a)

as in the power form:

 T = a + s(b + ct)+s2 (d + et + ft2), (9b)

where T* = rg P (q, f), T = (1-s)T*, s = sin2q, t = cos2 
(f-f0), a = P0, b* = mBiso, b = b*-a, c = mBani, d* = 
ma, d = d*-b*, e* = mDd(V)/2, e = e*-c, f=mDe (V)/2-e* 
and m = P0/A.

The methods vary by simplifying ways 
applied, and can be separated into Sectored 
methods (S and SR), Linear methods (L and 
LR), and General method (G), where the letter 
‘R’ denotes that the Rüger’s form (9a) is used 
instead of (9b).

Sectored methods

The method SR was suggested by Mallik et 
al. (1998) for the case of three azimuths with 
using equations (1), and (3). It took its perfect 
form in the work by Sabinin & Chichinina (2008) 
who used equations (6), (3), and (4). For this 
method, the traces of superbin are sorted by n 
azimuthal sectors. It is adopted that all traces 
of the sector have the same value of azimuth 
equal to the middle azimuth of the sector. 
Because of this, sectored methods introduce 
in f0 an own error no more than a half of the 
sector size.

Here, the method S applied to equation (9b) 
is presented. If in the sector of azimuth fj (j = 1, 
..., n), there are kj traces with incidence angles 
qj (i = 1, ..., kj) in the last layer above the target 
boundary, then one can write from (9b) for this 
sector j:

 T P B s C sij j j i j i= + +1 1 2 , (10)

where Tij is the value T calculated from the 
trace i in the sector j. In each sector, B1

j  = mjBj, 
C1

j  = mjCj, where mj = Pj /A, and Pj, B
1
j , C

1
j  are the 

fitting constants.

Having Tij and qi for all i in the sector j (kj  ≥ 
3), one can calculate si = sin2 qi, and then Pj, B

1
j , 

and C1
j  from (10) by the least-squares method. 

For this, it is minimized the functional of error 
for each sector j:

 F P B s C s Tj j j i j i ij
i

k j

= + + −
=
∑( )1 1 2 2

1
. 

For minimizing Fj, it is necessary to solve 
the system of three equations:

 ∂ ∂ = ∂ ∂ = ∂ ∂ =F P F B F Cj j j j j j/ , / , /0 0 01 1 . 

It gives: C
b f a g
b a cj

1 1 1 1 1

1
2

1 1

=
−

−
, B1

j = (f1-C1
j b1)/a1, 

and Pj =(u0-BC1
j  −AB1

j )/kj, where a1 = A2-Bkj, b1 = 
AB-Ckj, c1 = B2-Dkj, f1 = Au0-u1kj, g1 = Bu0 - u2kj,

 
A si

i

k j

=
=
∑

1

, B si
i

k j

=
=
∑ 2

1
,C si

i

k j

=
=
∑ 3

1
,D si

i

k j

=
=
∑ 4

1
,

,
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u Tij
i

k j

0
1

=
=
∑ ,

 

u s Ti ij
i

k j

1
1

=
=
∑ , and u s Ti ij

i

k j

2
2

1
=

=
∑ .

These calculations should be made for all 
sectors. 

Then, the unknown value f0 can be obtained 
from the system of equations of type (3), see 
(9b):

 B P b c tj j j
1 1 1/ = + , (11)

where j = 1, ..., n, and tj = cos2(f-f0). The 
unknown constants b1, and c1 have a sense: 
b1A = Biso-A, and c1A = Bani.

Equation (11) is transformed into more 
convenient form:

 Uj = b0+c0ggj+c0hhj, (12)

where Uj = B1
j  /Pj, b0 = b1 + 0.5c1, c0 = 0.5c1, g = 

cos(2f0), h = sin(2f0), gj = cos(2fj) and hj = sin(2fj).

The system (12) has three unknowns (b0, 
c0, and f0), therefore it should be n ≥ 3 for 
obtaining solution. The system (12) has two 
solutions (two f0 differing in p/2, and two c0 
of opposite signs, correspondently), and is 
solved by the least-squares method, too. It is 
minimized the functional of error:

 F b c gg c hh Uj j j
j

n

= + + −
=
∑( )0 0 0

2

1
. (13)

The following system of three equations 
should be solved:

 ∂F/∂b0 = 0, ∂F/∂c0 = 0, ∂F/∂f0 = 0. 

It gives: tan( )2 0
1 1 1 2

1 2 1 1

≡ =
−

−

h
g

b f a f
b f c f

ϕ , c0 = f1/

(ga1 + hb1), and b0 = [u0-c0(Ag + Bh)]/n, where 

a1 = A2-Cn, b1 = AB-Dn, c1 = B2-En, f1 = Au0-u1n, 

f 2=Bu 0-u 2n, A gj
j

n

=
=
∑

1

, B hj
j

n

=
=
∑

1

, C gj
j

n

=
=
∑ 2

1
,

D g hj j
j

n

=
=
∑

1

, E hj
j

n

=
=
∑ 2

1

, u U j
j

n

0
1

=
=
∑ , 

u g Uj j
j

n

1
1

=
=
∑ , and u h Uj j

j

n

2
1

=
=
∑ .

The condition for distinguishing symmetry-
axis from fracture-strike directions is derived 

by Sabinin & Chichinina (2008), and uses 
equation (4). Here it is presented in more 
general form.

In terms of equations (9b), (10), and (11), 
equation (4) can be written as

 C P d e t f tj j j j
1 1 1 1 2/ = + + , (14)

where j = 1, ..., n, d1 = (a-Biso)/A, e1 = (Dd(V)/2-
Bani)/A, and f1 = (De(V)-Dd(V))/(2A).

When substituting the value π
0 2±ϕ  instead 

of f0 into equation (14), the sign of the second 
term e1tj switches to the opposite sign, because 
equation (14) takes the form

 C P d e e t f tj j j j
1 1 1 1 1 2/ ( )= + − + . 

The last term of equation (11) c1tj switches 
its sign, too. One can combine Dd(V) = 2A(c1 + e1) 
from definitions to equations (11), (14), and 
conclude that the sign of Dd(V) is switched, too. 
For calculating Dd(V), it should be solved system 
(14) which is similar to (10) by the method of 
solution.

If the HTI layer is situated between 
isotropic layers then Dd(V) must be negative for 
upper reflecting boundary of the HTI layer, and 
positive for lower boundary. If the calculated 
value of Dd(V) has this sign then f0 is the 
symmetry-axis angle. In opposite case, it is 
the fracture-strike direction.

It must be noted that De(V) = 2A(c1 + e1 + 
f1), and also can be used for distinguishing 
solutions because e(V) and d(V) have the same 
sign.

The formal condition that the second 
derivative of functional (13) must be positive in 
the minimum of functional can also be applied. 
Because of errors in data, it should be used as 
an additional condition to previous ones, and 
should have a form ∂2F/∂f2

0 > a small value.

Linear methods

The method LR was suggested by Jenner 
(2002) for equation (1). It is not needed in 
sectoring data. All traces of superbin are taken 
into consideration together.

Here, it is applied to equation (9b), the 
method L. Equation (9b) is truncated after a 
line part respecting s. If the superbin has n 
traces(i = 1, ..., n), with incidence angles qi at 
the target boundary, and with azimuthal angles 
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fi, then one can write the result of truncation 
in the form:

 Ti = a + si (b0 + c0ggi + c0hhi). (15)

where Ti is the value T calculated from the trace 
i, si = sin2qi, b0 = b + 0.5c, c0 = 0.5c, g = cos(2f0), h 
= sin(2f0), gi = cos(2fi), and hi = sin(2fi).

The values si, gi, and hi are known because 
they can be calculated from headers of 
seismograms and parameters of medium. Let 
us consider the functional of error:

 F a b s c gs g c hs h Ti i i i i i
i

n

= + + + −
=
∑( )0 0 0

2

1
.  

  (16)

Functional F must be minimized over 
parameters a, b0, c0, and f0. For this, it is 
necessary to solve the system of four equations:

 ∂F/∂a = 0, ∂F/∂b0 = 0, ∂F/∂c0 = 0, ∂F/∂f0 = 0.  
  (17)

Solution of system (17) gives the equation 
for obtaining f0:

 tan( )2 0
2 1 1 2

2 2 1 1

= =
−

−

h
g

A H A H
A H B H

ϕ , (18)

where A1=a1b1-a2
2 , B1=a1c1-a2

3 , A2=a1b2-a2a3, 
H1=F2a1-F1a2, and H2=F3a1-F1a3 in which 
a1=nB-A2, b1=nI-D2, c1=nJ-E2, a2=nG-AD, 
b2=nK-ED, a3=nH-AE, F1=nf1-Af0, F2=nf2-Df0, 

and F3=nf3-Ef0, and finally:A si
i

n

=
=
∑

1

,B si
i
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=
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1
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1
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1
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i

n

=
=
∑ 2

1
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i

n

=
=
∑ 2 2

1
, J h si i

i

n

=
=
∑ 2 2

1
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K g h si i i
i

n

=
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1
, f Ti

i

n

0
1

=
=
∑ , f s Ti i

i

n

1
1

=
=
∑ ,

f g s Ti i i
i

n

2
1

=
=
∑ , and f h s Ti i i

i

n

3
1

=
=
∑ .

The other parameters are:

c A H A H
h A A B0
2 1 1 2

2
2

1 1

=
−

−( )
, b0 = (F1-c0ga2-c0ha3)/a1, 

and a = (f0-b0A-c0gD-c0hE)/n.

From (18), one can see that the solution f0 
has a period of 2

π. This value of the period means 

that we must use an additional condition for 
understanding what value f0 is the symmetry-
axis azimuth. This condition may be Bani > 0 if VS 
/ VP > 0.56 (Chichinina et al., 2003). In general 
case, it can be the condition ∂2F/∂f2

0 > a small 
positive value, where F is the functional of 
error (16).

General method (G)

The method is constructed by analogy with the 
GM method by Sabinin (2013). It is not needed 
in sectoring, too. All traces of superbin are taken 
into consideration together. If the superbin has 
n traces (i = 1, ..., n), with incidence angles qi at 
the target boundary, and with azimuthal angles 
fi, then equation (9b)  can be written as:

 T a bs cs t ds es t fs ti i i i i i i i i= + + + + +2 2 2 2 , 

where Ti is the value T calculated from the trace 
i, si = sin2qi, and ti = cos2(fi-f0).

Let us consider the functional of error:

 
F a bs cs t ds es t fs t Ti i i i i i i i i

i

n

= + + + + + −
=
∑( )2 2 2 2 2

1  

                   F a bs cs t ds es t fs t Ti i i i i i i i i
i

n

= + + + + + −
=
∑( )2 2 2 2 2

1
. (19)

Functional F must be minimized over 
parameters a, b, c, d, e, f, and f0. For this, 
it is necessary to solve the system of seven 
equations:

 ∂F/∂a = 0, ∂F/∂b = 0, ∂F/∂c = 0, ∂F/∂d = 0, 
 ∂F/∂e = 0, ∂F/∂f = 0, ∂F/∂f0 = 0. (20)

The six first equations of system (20) give 
a line system for deriving expressions for the 
parameters a, b, c, d, e, and f (for details, see 
Appendix).

The last equation of (20) can be transformed 
into a non-linear equation for obtaining f0 (for 
details, see Appendix).

Thus, system (20) is non-linear on f0, and 
is solved by the method of bisecting. It has 
more than one solution usually. From these 
local solutions, one chooses that one which 
gives a minimum for functional (19).

As was observed from calculations, the 
solutions of system (20) near the symmetry 
axis angle, and near the fracture strike angle 
give close values of functional (19). It means 
that additional criterions are practically needed 
for separating these directions. For the case 
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of HTI layer situated between isotropic layers, 
it can be the condition of negative values 
for calculated e(V) and d(V) in the anisotropic 
layer, as above. For this, from definitions to 
equations (9b) and (2), one can calculate from 
the solution of (20) at the interface:

 De(V)= 2A(c + e +f)/a, (21)

 Dd(V)= 2A(c + e)/a. (22)

In the case of interface between anisotropic 
layers, it is needed additionally to know 
the predefined signs of De(V), and Dd(V) for 
comparison.

The additional criterion can also be the 
maximum of second derivative of functional 
(19), ∂F/∂f0.

Comparing the AVOA techniques

The techniques using the methods above 
for estimation of symmetry axis angle were 
compared in ability to give the most precise 
value of f0 for HTI medium. At present, reliable 
field methods of obtaining f0 do not exist. 
Therefore, I generated synthetic seismograms 
for an artificial three-layer medium with the 
anisotropic layer in the middle by applying 
the technique by Sabinin (2012) of 2D wave 
modeling. I set f0 =60º, and derived models of 
the anisotropic layer for different values of fj by 
rotating the stiffness tensor for anisotropic HTI 
layer (MacBeth, 1999) around z axis relatively 
to f0. Anisotropic parameters en = 0.35, and et 
= 0.2 (see MacBeth, 1999) were used in the 
stiffness tensor.

Host rock velocity VP in three layers from 
above had the values 3200, 4000, and 4800 
(the other variant was 3200), m/s, VS was twice 
less, densities were equal, and thicknesses 
of two first layers were 1600, and 400 m. A 
source of explosion type generated one Ricker 
impulse of frequency 30 Hz. Receivers were 
spaced over every 100 m beginning from the 
source, and they measured z-component of 
velocity. There were 50 offsets, and 50 traces 
in each seismogram.

There were three goals: to investigate 
how the techniques behave on different sets 
of incidence angles, how the techniques are 
influenced by non-symmetry in fj relatively to 
f0, and how the techniques are influenced by 
noise.

Therefore, for the first goal, I made 
calculations of f0 for different intervals of 
offsets: from a minimum offset till a maximum 

offset, provided the minimum offset was 
fixed at the number one, and the number of 
maximum offset was changed from number 50 
down to 3 in one set of the intervals; and the 
maximum offset was fixed at the 50-th, and 
the minimum offset was changed from number 
1 to 48 in the other set of the intervals. 
Naturally, the maximum incidence angle qmax 
corresponding to the maximum offset, and the 
minimum incidence angle qmin corresponding to 
the minimum offset was also correspondently 
changed in these sets of offsets.

For the second goal, I obtained different sets 
of the synthetic seismograms corresponding to 
different azimuths, one seismogram for each 
azimuth. The sets of azimuths were uniform, 
and differed by symmetry. I did not aim to find 
the best or the worst set from them. I only 
supposed that a symmetric set can be better 
than an asymmetric one. I kept for testing the 
symmetric set of azimuths fj ={-150º, -120º, 
-90º, -60º, -30º, 0º, 30º, 60º, 90º, 120º, 150º, 180º}, 
and the asymmetric set fj ={85º, 95º, 105º, 115º, 
125º, 135º, 145º, 155º, 165º}. 

For the third goal, I took the best variant for 
the symmetric set of seismograms to eliminate 
the errors as due to the non-symmetry, as due 
to a finite-difference simulation when applying 
the artificial noise. The FD simulation by 
Sabinin (2012) uses PML boundary conditions 
which give non-visible (see Figure 4) but non-
zero waves reflected from the boundaries of 
area. This slightly distorts the form of some 
synthetic impulses.

For the synthetic seismic data being quasi-
real, I added a random Gauss normal noise to 
the seismograms generated, different for each 
seismogram. Maximum amplitude of the noise 
was chosen as 10% of the maximum amplitude 
of the wave reflected from the top boundary 
of the anisotropic layer in the first trace of 
seismogram.

Finally, I added the noise to the seismograms 
of the asymmetric set.

All seismograms were smoothed by 
filters (5) in the techniques. High-frequency 
components of the noise are eliminated well 
after smoothing, as shown in Figure 3. It 
is principally impossible to eliminate low 
frequencies compared with the frequency of 
signal. Therefore, the signal after smoothing 
remains slightly deformed. I suppose that just 
these deformations affect the estimated value 
of f0 in the case of noise.
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The same sets of the time windows were 
used for all the techniques, and for all intervals 
of offsets.

As illustration, in Figure 4, the seismogram 
without noise for azimuth 5º is presented for 
the variant of VP3 = 4800 m/s; and in Figure 
5,  the seismogram with noise for azimuth 30º 
is presented for the variant of VP3 = 3200 m/s.

As one can see from Figure 5, the amplitudes 
of noise reach really up to 50% of the maximum 
wave amplitudes in the middle traces, and up 
to 100% in the far traces.

The techniques were applied as to upper 
(1050 ms), as to down boundary (1250 ms) of 
the anisotropic layer.

In Figures 6, 7, the error of estimated f0 in 
degrees (difference with the correct value 60º) 
is presented for the symmetric set of azimuths 
and the upper boundary, variant VP3 = 3200. 
Figure 6 is for fixed qmin = 0º, and Figure 7 is 
for fixed qmax = 56.853º. The sectored methods 
show some instability for small values of qmax-
qmin in comparison with the others. All methods 
increase the error in the case of small qmax 
(Figure 6).

For the lower boundary and in the variant 
VP3 = 4800, the general and linear methods 
also show increasing errors for small qmax, 
and small qmax-qmin, see Figure 8, and Figure 
9. However, the errors of these methods are 
sufficiently less than of the sectored methods.

In Figures 10, 11, the variant of Figs. 
6, 7 with the added noise is presented. The 
sectored methods demonstrate so great errors 
and instability that can not be recommended 
for applying. The other methods show large 
errors only for small qmax (less than 30º).

The asymmetric set of azimuths is presented 
by results in Figures 12-15. The variant of 
upper boundary and VP3 = 3200 without noise 
is presented in Figures 12, 13, and the same 
with the noise – in Figures 14, 15.

Typical peculiarities of the asymmetric set 
are: great errors of the sectored methods with 
instability in noised data, and stable large 
errors of the linear methods (up to 7º). The 
general method remains of small errors. The 
noise causes instability of all methods in the 
interval of qmax<36º, provided even the general 
method (G) gives large errors in this interval.

Figure 4. Synthetic seismogram without noise. Azimuth 5º, VP3 = 4800. Axis x – time in ms, axis y – numbers 
of traces. Zero time is origin of the source impulse.
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Figure 5. Synthetic seismogram with added 10% noise. Azimuth 30º, VP3 = 3200. Axis x – time in ms, axis y – 
numbers of traces.

Figure 6. Errors for the symmetric set of azimuths; the upper boundary, and fixed qmin=0.
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Figure 7. Errors for the symmetric set of 
azimuths; the upper boundary, and fixed 

qmax=56.853º.

Figure 8. Errors for the symmetric set of 
azimuths; the lower boundary, variant VP3 

= 4800, and fixed qmin=0.

Figure 9. Errors for the symmetric set of 
azimuths; the lower boundary, variant VP3 

= 4800, and fixed qmax=63.6º.
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Figure 10. Errors for the symmetric 
set of azimuths; the noise, the upper 
boundary, VP3 = 3200, and fixed qmin=0.

Figure 11. Errors for the symmetric 
set of azimuths; the noise, the upper 
boundary, VP3 = 3200, and fixed 

qmax=56.853º.

Figure 12. Errors for the asymmetric 
set of azimuths; the upper boundary, 

variant VP3 = 3200, and fixed qmin=0.
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Figure 13. Errors for the asymmetric 
set of azimuths; the upper boundary, 
variant VP3 = 3200, and fixed qmax=56.853º.

Figure 14. Errors for the asymmetric 
set of azimuths; the noise, the upper 
boundary, VP3 = 3200, and fixed qmin=0.

Figure 15. Errors for the asymmetric 
set of azimuths; the noise, the upper 
boundary, variant VP3 = 3200, and fixed 

qmax=56.853º.
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Discussion and conclusion

Some unexpected results were obtained. The 
first is that the sectored S and SR methods 
are failed. They can be used only in seismic 
data without noise, and for mainly symmetric 
distributions of azimuths f in the 3D data 
(Figures 6 - 9). This is too ideal conditions.

The second is that the linear L and LR 
methods have an additional nearly constant 
error in mainly asymmetric distributions of 
azimuths f in the data (Figures 12 - 15). This 
error is probably connected with the truncation 
of high terms in equation (1) of Rüger, 
because the general method G has not such 
error. Therefore, the linear methods should be 
applied to azimuthally symmetric data.

The third is that the smoothing data with 
noise by simple filters (5) gives relatively 
stable estimated values of f0 in a wide interval 
of incidence angles q for the methods L, LR, 
and G (Figures 10, 11, 14, 15). The interval of 
instability is near the normal incidence, and has 
a width of qmax<40º, different in different variants 
(Figures 10, 14). For data without noise, this 
interval is qmax<10º (Figures 6, 8). Presence of 
the interval of instability is an intrinsic property 
of the formula (1) in connection with the least-
squares method. Errors in amplitudes become 
relatively more with decreasing q in definition 
of f0 by equation (1).

The results show a superior of the general 
method (G). On the whole, its errors are less 
than of the others. Unfortunately, it has an 
intrinsic problem of choosing the right solution 
from the local solutions of non-linear system 
(20). All criterions described above do not 
guarantee the correct choosing. It is especially 
difficult in the interval of instability. All the 
methods have such problem of distinguishing 
solutions. The best in this sense is the 
method L. Its criterions are failed very rarely. 
Therefore, I recommend applying the method 
G in a coupling with the method L: after 
estimation of f0 by L, the value f0 is defined 
more precisely by G with expertly taking into 
consideration the local solutions of (20). The 
other recommendation is to avoid the interval 
of instability.

In applying to field data, the techniques 
can give worse results. The real data have 
much more interferences of waves than the 
synthetic data. It is practically impossible to 
clear each interfered wave of the other by 
filters.  Distorted by this way impulses can lead 
to unpredictable results.

Appendix. Solution of system (20)

Let’s define:
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Then, from the first six equations of system 
(20), one can derive the formulas for unknown 
parameters:

f a f a f
a a b

=
−

−
2 1 1 2

2
2

1 1

, e f fa
a

=
−1 2

1

,

d g fa ea
a

=
− −1 13 12

11

,

c h fa ea da
a

=
− − −1 24 23 22

21

,

b k fa ea da ca
a

=
− − − −1 05 04 03 02

01

,

a=(U0 - fE - eD - dC - cB - bA)/n,

where a01=A2-Cn, a02=AB-Dn, a03=AC-Fn, 
a04=AD-Gn, a05=AE-Hn, b01=B2-En, a02=BC-
Gn, b03=BD-Hn, b04=BE-Kn, c01=C2-Ln, 
c02=CD-Mn, c03=CE-Nn, d01=D2-Nn, d02=DE-
On, e01=E2-Pn, k1=AU0-U1n, k2=BU0-U2n, 
k3=CU0-U3n, k4=DU0-U4n, k5=EU0-U5n,
a21=a2

0 2-a01b01, a22=a02a03-a01b02,
a23=a02a04-a01b03, a24=a02a05-a01b04,
b21=a2

0 3-a01c01, b22=a03a04-a01c02,
b23=a03a05-a01c03, c21=a2

0 4-a01d01,
c22=a04a05-a01d02, d21=a2

0 5-a01e01, h1=a02k1-a01k2,
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h2=a03k1-a01k3, h3=a04k1-a01k4, h4=a05k1-a01k5,
a11=a2

2 2-a21b21, a12=a22a23-a21b22,
a13=a22a24-a21b23, b11=a2

2 3-a21c21,
b12=a23a24-a21c22, c11=a2

2 4-a21d21, g1=a22h1-a21h2, 
g2=a23h1-a21h3, g3=a24h1-a21h4, a1=a2

1 2-a11b11,
a2=a12a13-a11b12, b1=a2

1 3-a11c11, f1=a12g1-a11g2, 
and f2=a13g1-a11g3.

The seventh equation of system (20) takes 
a form:

c(aA1 + bB1 + cC1 + dD1 + eE1 + fF1 - U6) + 
e (aB1 + bD1 + cE1 + dG1 + eH1 + fK1 - U7) + 
2f(aC1 + bE1 + cF1 + dH1 + eK1 + fL1 - U8) = 0
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∑ , and yi = sin[2(fi-f0)].
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