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RESUMEN
Datos de estratificación y corriente media de un modelo cuasigeostrófico de ocho capas de la Corriente de California son usados

para resolver el problema de estabilidad lineal asociado. Se obtiene, al resolver un problema de autovalores complejos la frecuencia,
rapidez de fase, velocidad de grupo, razón de crecimiento y estructura vertical. Se corren siete experimentos para estudiar la influencia
de las diferentes condiciones de frontera (fondo plano o inclinado), dirección media de la corriente, amplitud, latitud y mecanismos de
fricción en las características de las ondas de Rossby. Usando valores de la frecuencia de flotabilidad características del Pacífico
Nororiental encontramos que la resolución vertical es crucial para determinar los efectos de la topografía y fricción de fondo en la
estabilidad del flujo básico. La estructura vertical del flujo medio tiene un efecto importante en la escala de decaimiento exponencial.
Esta escala de decaimiento de las diferentes áreas de la región de la Corriente de California varía entre 144 y 374 días para las ondas
más inestables. La estructura vertical de nuestra solución de onda (amplitud y fase) es afectada perceptiblemente por la disipación
usada en el modelo. Las características del primer modo baroclínico de la onda estable son cualitativamente y cuantitativamente
similares a las obtenidas por Kang et al. (1982) usando datos hidrográficos de la Corriente de California. La inclusión de topografía de
fondo lleva a una moderada redistribución de frecuencias en el espacio de número de onda y a más altas velocidades de grupo.

PALABRAS CLAVE:  Ondas de Rossby, estabilidad, modelación numérica, Corriente de California.

ABSTRACT
Mean flow and stratification data obtained from an eight-layer quasigeostrophic model of the California Current System are used

to feed a linearized model, from which a stability problem is solved. Frequencies, phase speeds, group velocities, growth rates and
vertical structures are obtained after solving a complex eigenvalue problem. Seven runs are implemented to study the role played by
different vertical boundary conditions (flat and sloping bottom), mean flow direction and amplitude, latitude and frictional mecha-
nisms on the Rossby wave characteristics. For values used of buoyancy frequency as found in the Northeastern Pacific, the vertical
resolution is crucial in determining the effects of bottom topography and bottom friction on stability of the basic flow. The vertical
structure of the mean flow has an important effect on the determination of the e-folding-time. The e-folding times of different areas in
the California Current System region range from 144 to 374 days for the most unstable waves, as found by other authors using
different data and models. The vertical structure of our wave solutions (amplitudes and phases) are noticeably affected by dissipation.
The first baroclinic mode stable waves show a good qualitative and quantitative agreement with those obtained from hydrographic
data for the California Current by Kang et al. (1982). The inclusion of bottom topography leads to a moderate redistribution of
frequencies in the wavenumber space and to higher group velocities.

KEY WORDS:  Rossby waves, stability, numerical model, California Current.

I.-INTRODUCTION

Rossby waves can be generated by seasonal fluctuations
in longshore wind stress, by time-dependent Ekman pump-
ing forced by the annual oscillations of the wind stress curl,
by Kelvin wave activity  and by barotropic and baroclinic
instabilities. Baroclinic instability may have linear  and non-
linear contributions (see Auad et al. 1991, hereafter A91,
Pedlosky 1979). Linear contribution dominate the genera-
tion of waves over most of the California Current System
(CCS)(A91).

We approach the Rossby wave problem, both stable or
unstable, by solving the eigenproblem associated with the
quasi-geostrophic equations and its vertical boundary condi-

tions. Rossby waves are assumed to propagate on an infinite
horizontal ocean with depth-dependent mean flow and strati-
fication. The three-dimensional mean flow structure is ob-
tained from a non-linear model (A91). This structure shows
a good agreement with historical descriptions of the CCS.
For example, the California Current, the Davidson Current,
the California Undercurrent and the Southern California Eddy
were all present in the model solutions. In addition, the CCS
dynamics and their seasonal fluctuations as described in Lynn
and Simpson (1988) were also reproduced by the model.

First we determine the period, wavelength, growth rate
and vertical structure of Rossby waves from a two-year run
of a non-linear model presented by Holland and Vallis (1995)
and discussed in A91. The depth-dependent stratification is
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the same which was used to obtain the mean flow from the
non-linear model. Further, we study the spatial variability of
the wave properties in the CCS by feeding the linearized
model with the same parameters and physical processes used
in the non-linear model. Finally, we compare the wave scales
of the linearized model in this paper to those obtained in the
non-linear model (A91), and we compare the wave proper-
ties obtained here with those reported by other authors. The
response of stratification and mean flow to changes in dissi-
pation and bottom conditions will be discussed. An eight-
layer linearized quasi-geostrophic model, that includes lat-
eral and bottom friction is used. We assume that baroclinic
instability is the dominant source of eddy kinetic energy, since
eastern boundary currents have a weak horizontal shear. As
shown by Auad (1989, hereafter A89), the amount of eddy
kinetic energy produced by baroclinic instability (linear plus
non- linear) is at least one order of magnitude larger than
that due to barotropic instability in the areas we are study-
ing. Assuming an absence of horizontal shear, is consistent
with our selection of a constant bottom slope. The vertical
resolution of the model is fine enough to represent continu-
ous model energetics. Lee and Niiler (1987), suggest a mini-
mum of six layers for the North East Pacific.

An early study of the kind proposed here was due to Kang
et al. (1982), who used 2-layer continuous models and the
mean flow was allowed to change direction with depth. They
computed a dispersion relation for first-baroclinic-stable-
mode Rossby waves at 35°N - 132.5°W. For a southeast-
ward flow with a vertical shear of 7 cm s-1, a two-layer invis-
cid model, they found that the most unstable wave propa-
gates southward with a wavelength of 470 km, a period of
243 days and an e-folding time of 52 days. Lee and Niiler
(1987) evaluated the complex dispersion relation for quasi-

Fig. 1. Areas where all seven runs were performed. The mean
flow used in each  is averaged for each area.

Table 1

Model Parameters common to all seven runs

      Summary of Model Parameters

Layer thickness 100.,150.,250.,450.,650.900,1150.,1350.m
Reduced gravities 0.07061, 0.008196, 0.008389, .0.005521

0.002170, 0.0005094, 0.00006908 m s-2

fo 7.943 x 10-5s-1

β 1.92 x 10-11m-1s-1

Earth’s radius 6.37 x 106m

geostrophic waves in the Eastern North Pacific, west of 130°
W. In their area V, west of our areas I and II, (see Figure 1),
they found that the most unstable wave propagates south-
ward with a wavelength of 180 km, a period of 528 days,
and an e-folding time of 162 days when the surface mean
flow is about 2 cm s-1 southeastward. For a three-layer quasi-
geostrophic box model Lee (1988) showed that in a west-
ward mean flow of 2 cm s-1, the most unstable wave propa-
gates westward with a wavelength of 175 km, a period of
226 days, an e-folding time of 160 days. For a southward
mean flow the most unstable wave propagates also south-
ward but has an e-folding time of about 210 days. All these
results show good agreement with the observed variability.

II. THE MODEL

a. Data

The data that provides the mean values defining the
eigenproblem described below correspond to the years 1979-
1980. They were generated by the eight-layer limited area
quasi-geostrophic numerical model by Holland and Vallis
(1995). Results from this model for the same two-year pe-
riod were analyzed in A91. The model is wind driven by the
Fleet Numerical Oceanographic Center (FNOC) wind stress
curl. It includes lateral Laplacian friction and bottom linear
friction. It also includes realistic topography and it is em-
bedded in another numerical model that occupies almost the
whole North Pacific Ocean but has coarser horizontal reso-
lution (one-sixth of a degree vs. one degree).

The region discussed in this paper is shown in Figure 1.
In Table 1 we present the reduced  gravities and layer thick-
nesses, while in Figure 2 we show the four different vertical
structures of the mean flow studied in this paper.

b. Governing Equations

The perturbed and linearized quasi-geostrophic equations
for a two-layer ocean are given in Pedlosky (1979) and Kang
et al. (1982) for a spiraled inviscid flow. Lee and Niiler (1987)
introduced lateral Laplacian friction and presented the deri-
vation of an N-level model. All these authors impose a rigid
lid at the sea surface (z=0) and a flat bottom at the lower
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level (z=-H). Following Lee and Niiler (1987) we derive the
case in which a large-scale topography gradient (bottom
boundary condition) and linear bottom friction are included.
The linearized evolution for the quasi-geostrophic
streamfunction (ϕ), and its vertical boundary conditions, are
given by
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w' = J(ϕ ,b)δ−H,z       at       z = 0,-H,    (2)

where u and v are the zonal and meridional components of
the mean flow, f0 is the Coriolis parameter, β is the merid-
ional gradient of the Coriolis parameter, Am is the lateral
Laplacian friction coefficient, ε is the bottom friction coef-
ficient, δ is Kronecker’s delta, b is the bottom topography, w
is the vertical velocity, J is the Jacobian operator and N is the
buoyancy frequency. Condition (2) implies that,
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Fig. 2. Vertical structure of the mean flow for all four areas shown in Fig. 1. a) Area I b) Area II c) Area III d) Area IV. Each star corre-
sponds to a different layer. Larger velocities are higher up in the water column.
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at z = 0,−H.    (3)

We seek normal mode solutions of the form

ϕ (x, y, z, t) = Re φ (z)exp i(kx + ly − ωt)[ ]{ } (4)

where φ(z) is the complex amplitude, k and l are zonal and
meridional wavenumbers respectively, and ω is the wave fre-
quency.

From (1) and (4) we obtain,
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and from the vertical boundary conditions
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where
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r
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r
K

and   
r
K =(k,l).

The discretization scheme used to solve the complex
eigenvalue problem (5) and (6) is described by Lee and Niiler

(1987). Our equations differ from theirs in the bottom bound-
ary condition and in the bottom friction term. The present
linearized model is a discretization in eight levels of a con-
tinuous quasi-geostrophic model which is exactly equiva-
lent to an eight layer quasi-geostrophic model (Pedlosky
1979). If biharmonic friction is used instead of Laplacian
friction, the lateral friction term takes the form

                   (A4K4 − εδ−H,z )iKφ ,  (7)

where A4 is the biharmonic lateral friction coefficient de-
fined in Table 2. Other authors have dealt in detail with the
issue of Laplacian versus biharmonic friction (e.g. Harrison
1980). Here we only show the main features of the most un-
stable wave for a biharmonic frictional ocean (Table 3).

The external forcing term is not included in our calcula-
tions. At quasi-geostrophic scales it only enters the stability
problem by defining the structure of the mean flow (Pedlosky
1979). Thus a mean meridional flow, v , would not exist with-
out a mean wind stress curl.

Table 3

Characteristics of the  Most  Unstable Waves  for all seven
runs. T is the period,  λ is the wavelength, Cr is the phase
speed,  Te is the e-folding time,  θ is the propagation direc-

tion and Rd is the deformation radius.

c. Experiments

We perform seven calculations to study the spatial in-
homogeneities of the CCS wave field and its sensitivity to
different boundary conditions, mean flows and frictional
mechanisms. The parameters for each case are shown in Table
2. Zonal and meridional values of the large scale topography
gradient, bx and by, are typical for the selected areas, though
we are mainly concerned with qualitative effects in compari-
son with the flat-bottom case.

Cases 1 and 5 to 7 show that different mean fields can
affect stable or unstable Rossby waves. In Case 2 we discuss
the topographic effect, while in case 3 we analyze the influ-

stnemirepxE aerA b
x

b
y

ε s( 1- ) m(mA 2S1- )
A[

4
m( 4S1- ])

1 I 01x1 3- 01x5 4- 01x1 7- 002

2 I 0 0 01x1 7- 002

3 I 01x1 3- 01x5 4- 01x1 7- 01x8[ 9]

4 I 01x1 3- 01x5 4- 0 002

5 II 01x1 3- 01x1 4- 01x1 7- 002

6 III 01x8 4- 01x1 4- 01x1 7- 002

7 VI 01x1 3- 01x1 4- 01x1 7- 002

Table 2

Model Parameters for the different runs:  bx is the zonal to-
pographic gradient,  by is the meridional topographic gradi-
ent,  ε is the the  bottom  friction  coefficient,  Am  is  the
Laplacian  lateral  friction  coefficient  and A4  is the bihar-

monic lateral friction coefficient.

stnemirepxE )syad(T λ )mk( C
r

yadmk( 1- ) T
e

)syad( θ )°( R
d

)mk(

1 964 692 36.0 771 262 63

2 834 372 26.0 971 862 63

3 142 661 96.0 49 882 63

4 964 692 36.0 771 262 63

5 258 934 15.0 473 852 14

6 427 743 05.0 552 462 14

7 561 312 92.1 441 902 84
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ence of bottom friction on the perturbed field. We use the
mean flow latitude data of area I to explore the physics of
Cases 2 and 4. Runs 1 and 5 to 7 feature the same conditions
which were used to obtain the mean field data, including the
same stratification, frictional processes and coefficients and
average bottom slope as in the non-linear numerical model
of eq (5) and (6). We take Case 1 as the control case. In order
to calculate ω and φ(z) in (4), we compute the complex eigen-
values c, (i.e. the complex phase velocities), and the eigen-
vectors φ(z) from the discretized version of equation (5) and
(6) for an eight-layer system. The complex frequency is ω =
ωr + iωi, where ωr is the wave frequency and ωi is the wave
growth rate. The inverse of ωi is often referred to as the e-
folding-time, it is a measure of the wave ability to convert
available potential energy from the mean field into eddy ki-
netic energy.

Unstable or stable waves are obtained depending on the
sign of ωi. For stable waves we set the viscosity coefficient
to zero. For stable waves the distribution of frequencies in
wavenumber space (dispersion relation) was very slightly
affected by the inclusion of friction.

III. RESULTS

a. Case 1

This case refers to stable or unstable Rossby waves in
Area 1 (see Figure 1). This is our control experiment. The
parameters and physical mechanisms used for this experi-
ment are the same ones as in the non-linear model.

Growth rates of unstable waves (ωi >0) in Area I are

Fig. 3. Growth rates of unstable waves for Case 1 (sloping bottom, Area I). Contour Interval = 4 x 10-9 s-1. The growth rate or imaginary
part of the complex frequency is a measure of the wave instability. Its inverse, the e-folding time, is the time required for the wave to grow

or decay e (=2.718...) times. Since we are interested in highly energetic waves, we only show here positive e-folding times, i.e. growing
waves (see text for details on how to obtain growth rates).
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shown in Figure 3. These perturbations are generated by lin-
ear baroclinic instability (i.e., downgradient eddy fluxes of
temperature), through the conversion of potential to kinetic
energy. We consider the most unstable wave in more detail.
This wave minimizes the stabilizing effect of beta and maxi-
mizes the projection of the eddy flux of temperature onto the
mean temperature gradient (Pedlosky 1979, chapter 7). Thus
the conversion of available mean potential energy into eddy
kinetic energy is maximized.

Comparing Figure 3 and 2a we find that the most un-
stable wave (maximum growth rate) is not exactly aligned
with the direction of the mean flow of the three upper layers,
because it is not strong enough to overcome the beta effect.
Kang et al. (1982) show that for mean flows nine times stron-
ger than that of Area I, the most unstable wave is aligned
with the mean flow direction. The destabilizing effect of the
mean flow overwhelms the stabilizing effect due to beta, no
matter what the direction of the mean flow is. The direction
of propagation of unstable waves is closely determined by
the mean flow rather than by the beta effect even for mean
flows as weak as 2-3 cm/s. In fact, the observed propagation
directions in the non-linear model was always in the third
quadrant (i.e., l<0, k<0, A89). This might partly explain the
spatial inhomogeneity of the eddy velocity field observed
by A89. The inhomogeneity is increases by the sensitivity of
Rossby waves to horizontally non-uniform mean flows as
will be shown in Cases  5, 6 and 7.

In Figure 4 we show the amplitude of the most unstable
wave compared to the amplitude obtained from the average
eddy-kinetic energy calculated from the numerical non-lin-
ear model (A89). The overall shape of both curves is very

Fig. 4.  Amplitude of the most unstable wave  (MUW) for Case 1
(solid line) vs. the square root of the eddy kinetic energy (dotted
line)  obtained  from  the  non-linear  numerical  model (both for
Area I.)  Both curves are normalized against their maximum val-
ues.  The amplitude and phase of the MUW are obtained from

the complex eigenvectors.

Fig. 5a.  Dispersion relation for barotropic mode of stable waves
(Case 1) (sloped bottom). Contour interval = 3x10-7 s-1. This figure
shows the wave frequency in the wavenumber space,  i.e. a disper-
sion  relation.  Waves on the  left hand side propagate westward

(see text for details).

Fig. 5b. Dispersion relation for first baroclinic mode of stable waves
(Case 1).  The circle corresponds to the wavenumber associated
with  the  deformation  radius.  Contour  interval = 5 x 10-8 s-1.
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similar to each other. The similarity between the non-linear
results of A91 and the present linear results is due to the
dominance of linear baroclinic instability over non-linear
baroclinic instability over most of the areas studied in both
articles. Note that the most unstable wave in all calculations
corresponds to the first baroclinic mode. The horizontal scale
of these waves fits 10 to 30 times into the areas of study.
Comparing different areas (i.e. different mean flows) will
partly help to explain the horizontal spatial inhomogeneity
observed in the model waves of A91.

The dispersion relations ωr(k,l) for the barotropic and
first baroclinic modes of stable Rossby waves are curves of
constant ω in K space  (Figure 5a, b). Group velocities are
larger in the larger scales than in the smaller ones. Maxi-
mum group velocities for westward propagating waves are
about 2.6 cm s-1 for the first internal mode. Large scales are
more suitable for comparison with the real nonlinear case,
since linear waves dominate the wavenumber spectrum for
scales K-1>>KE

-1>>Rd in the quasi- geostrophic formalism
(Cushman-Roisin and Tang 1990). Here Rd is the radius of
deformation. For K-1 < KE

-1 the propagation is dominated by
geostrophic turbulence and linear processes become of lesser
importance. In this case the linear and non linear terms of
the governing equations have the same amplitude when,

           KE
−1 = Lβ R0     (8)

where Lβ = f0 / β and R0 is the Rossby number. For scales
larger than KE-1 we should expect a better agreement with
observations. For the present deformation radius (see Table
3) the transition wavenumber is 2.78 x 10-5 m-1 (wavelength
of 226 km). The circle in Figure 5b corresponds to K-1 = Rd.

Comparing the first internal mode (Figure 5b) to the syn-
thetic data and two-layer model (Figure 9) and to the hydro-
graphic data and the continuous model (Figure 11), there is
good qualitative and quantitative agreement. The two-layer
model of Kang et al. (1982) uses a southeastward mean flow
of 1.8 cm s-1 and their continuous model computations were
made at 35° N - 132.5° W. The cut-off frequency for the first
internal mode corresponds to a period of 226 days at
wavenumber K(-2.0,-0.1) x 10-5 m-1. Thus, observed vari-
ability with periods shorter than the cut-off period (226 days
in this particular case), is unlikely to be interpreted in terms
of Rossby wave variability. In the following we analyze to-
pographic, frictional and mean flow effects.

b. Case 2

The effect of including a different bottom boundary con-
dition is explored here. We consider a flat bottom ocean; all
other conditions are unchanged with respect to Case 1. We
compare our results from an 8-layer model with results from
2-layer models by other authors, in order to infer the role of
vertical resolution on stable and unstable waves.

The distribution of the growth rates in wavenumber space
does not change noticeably. The e-folding time of the most
unstable wave (see Table 3) reflects an increase of 1.3%
(about 2 days) with respect to Case 1. Thus, the stability of
the flat bottom case is not significantly different from that of
of a bottom sloped ocean (Case 1). A similar result was ob-
tained for area IV with a flat bottom (not shown). However,
numerical experiments using two-layer models (e.g.,
Robinson and McWilliams, 1974; Holland and Schmitz,
1985; Walls, personal communication) suggest that bottom
topography may play a more important role in the determi-
nation of the stability properties.

The amplitude and phase of the most unstable wave are
shown in Figure 6a, b. The inclusion of topography in Case
1 shows a tendency to trap energy above the main thermocline
(500 m). The most unstable wave in the sloping bottom case
presents more a less depth-dependent phase below the main
thermocline than does the most unstable wave in the flat-
bottom case. A positive east-west bottom slope (e.g. off Cali-
fornia), increases the β effect which leads to shorter and more
barotropic waves. If the sign of the topography gradient is
reversed and a more baroclinic wave with respect to the flat
bottom case resulted.

The dispersion relations for the external and first internal
stable modes are shown in Figure 7. The effect of topography
is obviously stronger in the external mode. The inclusion of
topography in Case 1 shows a general increase of about 20%
in the group velocities for both modes and of the phase ve-
locity in the external mode. Phase velocities in the first in-
ternal mode show small changes. Comparing the first inter-
nal mode (Figure 7b) with Figures 9a and 11 from Kang et
al. (1982), the agreement is now better than in Case 1 (Fig-
ure 5b). The first internal mode cut-off period was 238 days
at the wavenumber K=(-2.2, -0.6)x10-5. m-1.

c. Cases 3, 4, 5 and 6.

Case 3, a biharmonic frictional ocean for Area I, has been
extensively studied by several authors (e.g., Harrison, 1980).
Here we only show, for reference, the characteristics of the
most unstable wave.

In Case 4 the bottom friction coefficient is set to zero.
This experiment shows that bottom friction may be neglected
when the vertical structure of the density field is properly
resolved. The exception is for weakly stratified seas where
the bottom friction effects is not confined to a small portion
of the vertical column. In Cases 5 and 6 we study the effects
of different mean flows and latitudes on the stability and dis-
persion properties of the associated quasi-geostrophic vari-
ability.
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The inclusion of an Ekman bottom layer does not sig-
nificantly affect the properties of stable or unstable waves.
The phase of the most unstable wave is only slightly reduced
in the three bottom layers (2.6% in the bottom layer). As in
Case 2, two-layer models are much more sensitive (Walls
1989, personal communication). The fact that the complex
amplitude depends only on the vertical coordinate; this also
contributes to decrease the effect of bottom friction (A91).
Numerical experiments with and without bottom friction but
without lateral friction gave similar results.

In comparison with area I (Case 1), the areas II and III
have weaker mean flows which imply less available poten-
tial energy. Thus fewer and less unstable waves are gener-
ated. As in Case 1, the most unstable wave also propagates
southward, but with larger spatial and temporal scales and
with a slightly slower phase speed (see Table 3).

Fig. 6. a) Amplitude vs. depth of the MUW for the flat bottom
(Case 2, solid line) vs. the MUW of the sloping bottom (Case 1,

dotted line), b) As in a) but for phase vs depth.

The first baroclinic stable modes for areas II and III also
present few changes with respect to area I, mainly at scales
greater than the deformation radius. Group velocities and
phase speeds are slower in area I than in areas II and III by
about 25%. For first baroclinic waves of annual periods and
stratification typical of the CC a critical latitude exists around

Fig.  7a.  Dispersion  relation  for  barotropic  mode  of  stable
waves for Case 2 (flat bottom). Contour interval = 3 x 10-7 s-1.

Fig. 7b. Dispersion relation for first baroclinic mode of stable
waves for Case 2 (flat bottom). Contour interval = 5 x 10-8 s-1.
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sion relations shown here. The bidimensional spectra in A91
show waves with a period of 376 days and zonal wavelengths
of 1960 km and 1550 km at 28° N and 33° N respectively.
Between these two latitudes (our Area III), and for these two
wavelengths, we obtain wave solutions with periods of 450
days and 403 days respectively.

d. Case 7

In this case we study an area with a very different mean
flow structure to the control calculation (Case 1). The main
difference is that Area IV has an almost westward mean flow.
This will dramatically change, with respect to Area I, the
characteristics and dispersion properties of the waves.

Area IV has the most unstable waves of all cases. This
agrees with results presented by A89, who found the great-
est production of eddy kinetic energy by baroclinic instabil-

38° N (McCreary et al. 1987). Poleward of this critical lati-
tude, the waves have an exponential decay that limits off-
shore propagation. This can be seen by solving for k, the
zonal wavenumber, from the Rossby wave dispersion rela-
tion. Area I is very close to this critical latitude which might
explain the very slow propagation speed observed in this area,
as compared to areas II and III. A critical latitude in a re-
duced gravity formulation was detected by Parés-Sierra
(1991) from the propagation patterns of model waves. For a
reduced-gravity model forced by observed winds (COADS,
dominated by the annual period variability) a very clear di-
chotomy exists in the propagation of the waves. Perturba-
tions propagate equatorward of about 35° N and decay
poleward (Parés-Sierra, 1991). A much slower phase propa-
gation at 38° N than at either 25° N, 28° N or 33° N was also
found in A89.

The long Rossby waves found by A89 between the lati-
tudes of 28° N and 33° N approximately match the disper-

Fig. 8. Growth rates of unstable waves for Case 6 (area IV). Contour interval = 5 x 10-9 s-1.
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ity. The higher production of eddy  kinetic energy is due to
the direction of the surface mean flow in the top three layers.
As noted by several authors, westward mean flows are un-
stable due to the fact that they easily satisfy the necessary
conditions for the occurrence of baroclinic instability (see
for example Kang et al., 1982; Gill 1982). Our growth-rate
field (Figure 8) shows good qualitative and quantitative agree-
ment with Lee (1988) for a three-layer ocean.

The most unstable wave barely feels the topographic ef-

fect in comparison to areas I, II and III. This is because the
wavenumber and topography gradient vectors form a smaller
angle (see Figure 11). The amplitude and phase of the most
unstable wave for area IV and area I are presented in Figure
9. It is seen that the most unstable wave of area IV is more
baroclinic and has a larger vertical scale of decay for eddy
kinetic energy than in Case 1. Despite the larger deforma-
tion radius of area IV, its most unstable wave has a horizon-
tal scale smaller than area I (Case 1). This can be attributed
to the different vertical structure of the mean flow rather than
to the different latitudes as we should expect shorter waves
in higher latitudes. The amplitude of the most unstable wave
has a secondary maximum in the third layer (250 m-500 m)
which could possibly be related to the absolute subsurface
maxima observed in the southern part of the subtropical gyre
(Lee and Niiler 1987).

The barotropic mode of this experiment does not differ
markedly from the corresponding modes of Areas I, II and
III. The mean flow velocity is very small in comparison with
the phase speed of this mode. The dispersion relation for the
first baroclinic mode (Figure 10) differs significantly from
that in the other areas, where the surface mean flow is in the
southeastward direction. In Area 7, the dominant mean flow
is almost westward; it adds to the west-ward phase speed of
the stable Rossby waves. The cut-off period is 180 days and
is located at K=(-2.3,0.6)x10-5 m-1.

e. Linear vs. non-linear model

In this section we compare some results from the non-
linear solution by A91 with their linear approximation. Lin-
ear baroclinic instability is caused by downgradient eddy
fluxes of temperature, i.e. by mean flow instabilities, while
non-linear baroclinic instability is due to convergences of
the eddy flux of potential energy. Following A91, where the
energy equation is studied in detail, these two contributions
add up to a total vertical flux of temperature

                         W'T VT V'T T   ' ' '2 21
2= − ∇⋅ − ⋅∇      (9)

where w, V and T are the vertical velocity, the velocity vector
and the temperature. Primes denote anomalies with respect
to the mean, and bars denote mean values. In the second term
V is the total vector flow, i.e. the mean plus the perturbation.
Thus, a vertical heat flux w’T’  > 0 leads to baroclinic insta-
bility, i.e. a conversion of potential energy into eddy kinetic
energy. Either the eddy flow is extracting potential energy
from the mean flow (last term), and/or there is a sink of eddy
potential energy due to the total flow (second term). The
reader is referred to Pedlosky (1979) for a detailed treatment
of both types of instabilities and their joint effect (hybrid
instability). A91 finds a dominance of linear “local”

Fig. 9. a) Amplitude vs. depth of the MUW of Case 6 (area IV,
solid line) vs. the MUW of Case 1 (area I, dotted line.), b) As in

a) but for phase vs depth.

   a

   b
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baroclinic instability over non-linear baroclinic instability.
This dominance is summarized in Table 4 (from A91), for
the three upper layers. The only area where non-linear insta-
bilities are important is area I. The remaining layers, for all
four areas where, show an overwhelming dominance of lin-
ear instabilities. This dominance is to be expected given the
small Rossby number.

A91 shows that there is an almost linear relationship be-
tween vertically integrated eddy kinetic energy and verti-
cally integrated energy flux due to boundary fluxes plus
baroclinic instability (linear plus non-linear). If we substract
energy fluxes originated by non-linear baroclinic instability
from the variable defined in the horizontal axis (Figure 11),
it turns out that the effect on Figure 12 from A91 is minimal.
Thus, in almost all areas of the CCs the production of eddy
kinetic energy is mainly originated in linear baroclinic in-
stability processes and only secondarily by boundary fluxes.

Table 4

Ratios of eddy kinetic  energy  production  due to advection
of available  potential  energy over eddy kinetic energy pro-
duction due to downgradient fluxes, for the four selected re-

gions and for the top three layers

Figure 12 shows the 2-D spectra of the eddy stream-
function of the upper layer (from A91). It overlaps the long
stable wave approximation of the dispersion relations corre-
sponding to the first two baroclinic modes. A spectral peak
with a period of 376 days is very close, in all cases, to the
first mode of the idealized waves. These waves are likely
generated by the annual fluctuations of Ekman pumping,
through the wind stress curl, along the eastern boundary of
the North Pacific Ocean (White and Saur, 1981). The black
dot on the left of Figure 12(a) corresponds to the location of
the most unstable wave of area IV from the linearized model.
Its location ω-k space is very close to the eddy energy sec-
ondary maxima from the 2-D non-linear model.

The upper 100m of the main part of the California Cur-

rent (Area I) are the only ones dominated by non-linear
baroclinic instability. This may be due to the strong eddy
activity as shown by Lynn and Simpson (1988) and by A91.
These eddies interact with each other. In the remaining areas
and depth, shown in Table 4, the production of eddy vari-
ability is almost enterily due to the mean flow instability
through a release of mean potential energy into eddy kinetic
energy.

In conclusion, Table 4 and Figures 11 and 12 suggest that
the CCS may be represented by a linearized quasi-geostrophic
model. The amount of eddy kinetic energy produces by
barotropic instability processes is at least an order of magni-
tude smaller than the amount generated by baroclinic insta-
bilities (A91).

IV. CONCLUSIONS

The complex eigenproblem of an 8-layer quasi-geo-
strophic model was solved numerically to study the proper-
ties of Rossby waves generated by baroclinic instability in
the CCS. A realistic effect of topography and bottom friction
requires a high vertical resolution. When the vertical resolu-
tion is low the effect of topography and bottom friction may
affect the main thermocline directly in its stability proper-
ties, and the effects are imposed over a large section of the
water column. Topography and bottom friction play a greater
role in a two-layer model (e.g. Robinson and McWilliams,
1974) than in the present 8-layer one. Thus bottom friction

aerA

reyaL I II III VI

1 00.6 06.0 21.0 12.0

2 52.1 03.0 90.0 21.0

3 06.0 31.0 26.0 70.0

Fig. 10. First baroclinic mode of stable waves for experiment 7
(area IV). Contour interval = 5 x 10-8 s-1.

123



G. Auad and A. Parés-Sierra

and bottom slope effects are artificially enhanced by poor
vertical resolution. On the other hand, these effects will have
a more important role in determining the wave properties in
weakly stratified areas such as the Antartic Circumpolar
Current.

The dispersion relations for the sloping bottom case sug-
gest that stable Rossby waves had group velocities up to 60%
faster than in the flat bottom case. The inclusion of a gently
sloping bottom, typical of the northeastern Pacific ocean,
enhances the beta effect and leads to shorter and thus more
barotropic waves. It also increases the kinetic energy of the
upper layers, relative to the deeper ones, due to the relative
increase of the bottom slope effect over the β effect. This
relationship between wave parameters leads to an increased
dominance of the surface intensified Rossby waves over other
types of Rossby waves, including bottom-trapped and shear-
free waves, (see Rhines 1977, pp. 214). The surface-intensi-
fied mean flow also leads to surface intensified unstable
waves since the release of available potential energy will be
larger where the mean flow is faster and more sheared, i.e.
above the thermocline which in this model is at 500 m. The
growth rates were very similar in both cases.

A biharmonic frictional mechanism leads to more
barotropic and smaller e-folding vertical scales for the ki-
netic energy of the most unstable wave. This is probably due

to the different scales of the most unstable waves (166 km
for the biharmonic frictional case and 296 km for the
Laplacian case), rather than to higher-order frictional phys-
ics. Therefore, numerical models using a biharmonic fric-
tional term, with values for the coefficients of lateral friction
close to the ones in this article (Table 2), should provide
shorter, more energetic and more barotropic variability than
when using a Laplacian term.

The dispersion relation of the first baroclinic stable
Rossby mode for area I (33° - 38° N) showed very good
agreement with Kang et al. (1982) for the California Cur-
rent. The growth rates are in good agreement with those of
Lee (1988) and Lee and Niiler (1987). The quasi-linear first
baroclinic-mode annual Rossby waves found in A91 (non-
linear numerical model) have frequencies and wavenumbers
that closely match the dispersion relations obtained with our
linear model. Both indicate that Area IV is the most ener-
getic of all four areas. This agreement is partly due to the
fact that linear baroclinic instability dominates over non-lin-
ear baroclinic instability at most locations analyzed in A91.

The method used in this paper is strictly valid in the first
stages of unstable Rossby waves. Yet some of these waves,
especially those with long horizontal scales (Ro << 1) and
large growth rates, may become dominant in the long run for
a realistic non-linear ocean. The waves described in the seven
cases are to be considered a first step in the study of tempo-
ral evolution of mesoscale variability for the CCS area.
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Fig. 11. Vertically integrated eddy kinetic energy vs. vertically in-
tegrated production of eddy kinetic energy by baroclinic instability
plus boundary fluxes.  The roman numbers indicate the selected
area, the +’s refer to the case when the baroclinic instability con-
tribution to the  x axis takes into  account both linear  plus non-
linear  processes and  the o’s refer to the case when only linear
baroclinic instabilities are added to the boundary fluxes.  The heavy
straight line is the best fit to the +’s and the light line is the best fit

to the o’.
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