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RESUMEN
Se modela la propagación de petróleo derramado como una mancha bidimensional en la superficie de una área limitada del

mar, cuando hay un flujo no nulo del petróleo a través de la frontera abierta. Se sugieren las condiciones para las partes de entrada
y salida de la frontera del dominio, y se demuestra la existencia y la unicidad de la solución del problema de transporte de petróleo
y de su adjunto en las clases de funciones generalizadas. También se muestra que las soluciones de cada uno de los problemas son
estables en la presencia de errores en las condiciones iniciales, y en la tasa de emisión de petróleo desde el buque accidentado. Se
sugieren las estimaciones directas y adjuntas de la concentración de petróleo para evaluar las consecuencias de un accidente que
involucre el derrame de petróleo.

PALABRAS CLAVE:  derrame y transporte de petróleo, estimaciones de contaminación, existencia, unicidad y estabilidad de
soluciones.

ABSTRACT
An oil spill is modeled as a two-dimensional slick on a limited sea area when there is a nonzero oil flux through the open

boundary. Conditions are suggested for the input and output parts of the domain boundary, and the unique solvability of the oil
transport problem and its adjoint is proved for classes of generalized functions. It is also shown that solutions of the problem are
stable in the presence of errors in the initial condition and in the oil emission rate from a damaged tanker. Direct and adjoint oil
concentration estimates are suggested to evaluate the consequences of an accident involving oil spillage.

KEY WORDS: oil spill and transport, pollution estimates, existence, uniqueness and stability of solutions.

INTRODUCTION

Many studies have been devoted lately to the numeri-
cal modeling of oil slick spreading (Elliott, 1986; Elliott et
al., 1992; Proctor et al., 1994, Kennicutt et al., 1992). It is a
rather complicated problem, since the oil being released into
marine environment is subjected to various weathering pro-
cesses such as spreading and drift, advection and dissolu-
tion, evaporation and sinking, etc. Models have continued to
play an increasingly important part in the study of the role of
these processes and in the improvement of their
parameterizations. Moreover, the oil spill forecast and effec-
tive strategies to monitor and control the oil pollution cannot
be developed without using adequate oil transport model.
However any model result makes sense only if the model is
mathematically well posed, that is, if it has a unique solution
which is stable to errors in the initial and boundary condi-
tions and in the model forcing.

We formulate a simple two-dimensional mathematical
model of oil transport in a limited area in the case of an acci-
dent with an oil tanker. Even for a simplified limited-area
model, it is not trivial to pose the problem well. Since the oil
flux through the open boundary is unknown, the boundary
errors will propagate inside the domain by advection and

diffusion, and perturb or destroy the exact solution. In addi-
tion, errors in the initial conditions and the oil emission rate
from the damaged tanker can also distort the solution. Thus
it is important to select boundary conditions that are cor-
rected, both physically and mathematically. Such conditions
are suggested below. We prove that with such conditions,
the oil transport problem has a unique solution for certain
classes of generalized functions, and that any solution is stable
to perturbations in the forcing and initial condition. The
unique solvability and stability conditions establish restric-
tions on the magnitude and smoothness of the model coeffi-
cients. These restrictions should be taken into account when
different parameterizations of physical and chemical pro-
cesses are incorporated in the model.

Direct and adjoint estimates of the oil concentration in
ecologically significant zones are given here. We use the ap-
proach earlier developed by Marchuk and Skiba (1976, 1990)
for evaluating average temperature anomalies in the atmo-
sphere. While the direct estimates require the solution of the
oil transport problem and provide a comprehensive analysis
of the oil spill consequences, the adjoint estimates use the
adjoint transport model solutions and are effective and eco-
nomical in the model sensitivity study (Skiba, 1995a; 1996a;
1997, 1998b). On the whole, the direct and adjoint approaches
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complement each other nicely in studying the consequences
of the oil spill. We also show the unique solvability of the
adjoint transport problem and the stability of its solution with
respect to perturbations in the forcing and initial condition.

THE TWO-DIMENSIONAL OIL SPILL PROBLEM

We now summarize the main results obtained in Skiba
(1996a). Let r

0
 = (x

0
, y

0
) be the site of an accident with an oil

tanker in a two-dimensional open sea domain D with a smooth
boundary S, and let t=0 be the time of the accident. Let F(t)
be the rate of oil spilling in unit time from the damaged tanker,
and φ (r,t) the oil slick thickness on the sea surface at a point
r = (x,y) at time t>0. The oil slick propagation in D and time
interval (0,T) is described by the transport equation

                ∂∂ φ φ σφ µ φ
t

f r t+ ⋅∇ + − ∇⋅ ∇ =U ( , )    , (1)

with the forcing function

                             f r t F t r r( , ) ( ) ( )≡ −δ 0     , (2)

where µ (r,t) is the diffusion coefficient, ∇ is the two-dimen-
sional gradient, and δ (r-r

0
) is the Dirac mass at the accident

point r
0
. The parameter σ characterizes the decay of φ (r,t)

because of evaporation. The velocity U(r,t)={ u(r,t),v(r,t)} of
the oil propagation is assumed to be known and to satisfy the
continuity equation

         
∂
∂

∂
∂x

u
y

v+ = 0    . (3)

This vector can be calculated by using the climatic (sea-
sonal or monthly) sea surface currents and winds (Doerffer,
1992), or the real currents and winds from dynamic models
(Zalesny, 1986; Bulgakov et al., 1999). The initial condition
at t=0 is the absence of oil on the sea surface:

                            φ (r,0) = 0  .  (4)

To obtain a well-posed problem according to Hadamard
(1923), care is required in setting conditions at the bound-
aries (Marchuk, 1986; Poinsot and Lele, 1992; Skiba, 1996b).
Let Un be the projection of the velocity U on the outward
normal n to the boundary S. We divide S into the outflow
part S+ where Un ≥ 0 (oil flows out of the domain D), and the
inflow part S-  where Un < 0 (oil flows into D). The boundary
conditions for Eq.(1) are

          µ ∂
∂ φ φ
n

U Sn− = −0  at    , (5)

                 µ ∂
∂ φ
n

S= +0  at    . (6)

By (5), the combined diffusive plus advective oil flow
is absent at the inflow partS- as no oil flows into D from the

outside where water is free of oil. Condition (6) means that
at the boundary S+, the diffusive oil flow is negligible as com-
pared with the advective oil outflow µ∂φ/∂n from D. In the
non-diffusion limit (µ=0), condition (5) is reduced to φ=0
(there is no oil on the inflow boundary), while (6) vanishes,
as it must. Indeed, the pure advection problem (µ=σ=0) does
not require conditions at the outflow boundary, since its so-
lution is predetermined by the method of the characteristic
lines (Godunov, 1971). Note that condition (6) includes the
coastline where Un=0. In particular, for a closed basin D
everywhere bounded by the coastline, S- is empty and S=S+.
Thus equations (5) and (6) include the coastline condition
and approach the correct boundary conditions of the pure
advection problem in the non-diffusion limit.

It is easy to show that any solution of problem (1)-(6)
satisfies the oil balance equation

                  
∂
∂ φ σφ φ
t

dr F t dr U dSn

SDD

= − −
+
∫∫∫ ( )

(7)

and the integral equation

∂
∂ φ σφ µ φ φ
t

dr dr U dSn

SDD

2 2 2 22+ + ∇ + −
+
∫∫∫ ( )

         
U dS F t r tn

S

φ φ2
02=

−
∫ ( ) ( , )

    (8)

where φ 2dr
D
∫  is the norm squared in Hilbert space L2 (D) of

square-integrable functions in the domain D. Due to (7), the

total oil concentration φdr
D
∫  in domain D increases because

of the oil spill (F>0), and decreases by reason of both dissi-
pation (σ > 0, µ > 0) and advective oil outflow across S+.
However, since the oil spill from the damaged tanker is over

(F=0), both φdr
D
∫  and φ 2dr

D
∫  decrease with time. If, in ad-

dition to F=0, the dissipation is absent (σ = 0, µ = 0) and if
Un = 0 everywhere at the boundary S, both integrals are con-
served over time.

DIRECT AND ADJOINT ESTIMATES

Let us consider in the same domain D and time interval
(0,T) an adjoint transport problem

                 − − ⋅∇ + − ∇⋅ ∇ =∂
∂ σ µ
t

g g g g P r tU ( , ) (9)

with the boundary conditions

          µ ∂
∂ µ ∂

∂n
g S

n
g U g Sn= + =− +0 0  at       at  ,  , (10)
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with the condition

                                g r T( , ) = 0  at  =   ,t T  (11)

and the velocity vector U(r,t) as in (1). The problem (9)-(11)
can be introduced by using the concept of the adjoint opera-
tor in Hilbert space (Lyusternik and Sobolev, 1964; Marchuk,
1995; Marchuk et al., 1993). We will show that this problem
is only well posed according to Hadamard if it is solved in D
backward from t=T to t=0. The value

                              J r t drdt
T

T

( ) ( , )φ τ φ
τ

= ∫∫
−

1
Ω

Ω

  , (12)

where |Ω| is the area of a zone Ω, represents the average oil
concentration in Ω in a time interval (T-τ,T). It will be called
a direct estimate. If we solve the adjoint problem (9)-(11)
with the forcing

P r t
r t T T

( , ) ,
/ , ( , )

= ( ) × [ ]

           otherwise

   if  belongs to - ,
0

1 τ τΩ Ω
   (13)

we can obtain the adjoint estimate

                            J g r t F t dt
T

( ) ( , ) ( )φ = ∫ 0

0

  , (14)

where g(r0,t) is the adjoint problem solution at the accident
point r0 (Skiba, 1995b).

The direct estimate (12) and the adjoint estimate (14)
are equivalent and complement each other in accident stud-
ies. Sometimes one or the other of these estimates may be
preferred. The direct estimate (12) utilizes the solution φ (r,t)
of the problem (1)-(6); thus it depends on the two main pa-
rameters: the oil spill rate F(t) and the accident site r0. It is to
be preferred when the oil concentrations are required in the
whole domain D, or if the time available for counter-mea-
sures is assessed (Skiba, 1996a; Example 3). However, such
comprehensive information is rather costly and often unnec-
essary. Sometimes it may be sufficient to obtain estimate (12)
in some ecologically important zones Ω of domain D. In this
case, benefit can be gained from the adjoint estimate (14)
that uses the solution g (r0, t) of equation (9) at the accident
point r0, rather than problem (1)-(6). It should be noted that
the adjoint problem (9)-(11) may be solved for each zone Ω
irrespective of a specific accident with an oil tanker. This
approach is convenient and economical for model sensitiv-
ity studies when the r0-dependence (or F(t)-dependence) of
the oil concentration J(φ) is analyzed (Skiba, 1996a; Ex-
amples 4,5).

Given some ecologically significant zone Ω, let us find
the critical point on the tanker route where the oil spill maxi-

mizes the average value (12) (or (14)) in Ω. Integral (14),
calculated for any point r= (x,y) substituted for r0, determines

in D a two-dimensional function G r g r t F t dt
T

( ) ( , ) ( )= ∫
0

. Then

the tanker-route point r where G(r) peaks is the critical point,
where spillage hazard is highest.

The adjoint method is particularly efficient when the
oil transport problem is studied with climatic (seasonal or
monthly mean) winds and currents (Skiba, 1996a; Examples
1,2). Then the adjoint transport solution can be calculated
for each ecologically significant zone in advance, and fed
into a computer. Estimate (14) uses the adjoint solution val-
ues at the precise accident site; thus only the adjoint solution
values at the grid points along the tanker route need to be
stored in the computer. Any of these points is a possible site
of an oil spill. When an oil tanker has an accident, and the
site and oil spill rate are approximately known, a prelimi-
nary estimate of the average oil concentration may be given
for any zone, by selecting the corresponding solution and
taking the time integral (14).

For the solution of the main and the adjoint oil trans-
port problems, balanced, absolutely stable and compatible
numerical schemes and algorithms were suggested by
Marchuk and Skiba (1978, 1992), Skiba (1993, 1998a), Skiba
and Adem (1995), and Skiba et al. (1996). The splitting
method and Crank-Nicolson schemes are used to discretize
the two-, and three-dimensional problems in time. As a re-
sult, the numerical solutions of two-, or three-dimensional
problems can be found without iterations by factorization.

SOME FUNCTIONAL SETS AND SPACES

In order to show that the oil spill problem (1)-(6) and
its adjoint (9)-(11) are both well posed, let us prove the ex-
istence, uniqueness and stability of their solutions. To this
end, we introduce some functional sets, spaces and estimates.
The solutions are defined in a three-dimensional time-space
domain Q = D × (0,Τ). We introduce a Hilbert space L2 (Q)
of real-valued functions in Q with the inner product

                           
f g f r t g r t drdt

Q

, ( , ) ( , )= ∫  (15)

and the norm

                                       g g g= , /1 2   . (16)

Let M be a set of functions φ(r,t) belonging to the class C Q2 ( )
of twice continuously differentiable functions in the closed

domain Q Q D T D D S( , , )= ×[ ] = +0    that satisfy condition
(4) at the initial moment and have a finite norm
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                     φ φ φ φ φ
H t x y S

= + + +





2 2 2 2
1 2/

 . (17)

Hereafter φt, φx, and φy denote the partial derivatives of func-
tion φ(x,y,t) with respect to t, x and y, and

                                φ φ
S

S

T

dSdt=










+
∫∫ 2

0

1 2/

(18)

is the L2 -norm of the trace of function φ(x,y,t) on the bound-
ary S+. We introduce in M the inner product

         φ ϕ φ ϕ φ ϕ φ ϕ φ ϕ, , , , ,
H t t x x y y S

= + + +   , (19)

where

                                 φ ϕ φϕ,
S

S

T

dSdt=
+
∫∫

0

(20)

and we denote by H(Q) the Hilbert space obtained by clos-
ing the set M in the norm (17).

Lemma 1. For any function g(r,t) of H(Q), the norm g
H

 is

equivalent to the norm g g
H

2 2 1 2
+( ) /

.

Proof. It is sufficient to show that

                                  g g C g
H H

2 2 1 2
+( ) ≤

/
  . (21)

Because of (4),

g r t
g r

d
t

( , )
( , )= ∫ ∂ τ
∂τ τ

0

  ,

and hence,

g
g

d drdt T g T g
t

Q

t H
2

0

2

2 2 2 2=








 ≤ ≤∫∫ ∂

∂τ τ    .

Thus the inequality (21) is satisfied with C T= +1 2 .
The lemma is proved.

We now define a functional set V as the totality of the
functions

                     g r t r t d
t

( , ) ( , )= ∫ψ τ
0

(22)

where ψ(r,t) is any function of H(Q). The set V is dense in
H(Q), since M is dense in H(Q), and the closure V  of the set
V in norm (17) contains M.

EXISTENCE, UNIQUENESS AND STABILITY OF
THE OIL TRANSPORT SOLUTIONS

Definition. A function φ(r,t) in space H(Q) is said to be
a generalized solution of the oil transport problem (1)-(6) if
it satisfies the identity

           φ µφ µφδ δ δ
t t

t
x tx

t
y ty

tg e g e g e, , ,− − −+ +

                   + +− −

+
∫∫σφ φδ δ,g e U g e dSdtt

t
n t

t

S

T

0

(23)

+ + =− − −u g e v g e f g ex t
t

y t
t

t
tφ φδ δ δ, , ,

for any function g(r,t) of the set V and some δ>0.

Since φ(r,t) belongs to H(Q), and g(r,t) belongs to V, all
terms of the identity (23) are meaningful. Formally, it may
be derived by multiplying the equation (1) by the function
gt e-δt and integrating by parts with boundary conditions (5)
and (6). The solution defined in such a manner is a generali-
zation of the classical solution of the oil transport problem
(1)-(6). Indeed, if a generalized solution is sufficiently smooth
(i.e., if all its spatial derivatives up to the second order are
continuous) in a smooth domain D, then it is the classical
one. Note that if gt e-δt ≡ 1 (or gt e-δt=2φ), then identity (23)
coincides with balance equation (7) (or (8)) integrated over
the interval (0,T).

Theorem 1. Let F(t)∈L2(0,T). Let the oil velocity U
satisfy continuity equation (3), and let

  
     

Q t t n t Q
Umax min, , , , , , ,µ µ σ σ β µ σ αU ( ){ } = < ∞ { } = > 0 .

(24)

Then the oil transport problem (1)-(6) has a unique gen-
eralized solution φ(r,t) in the space H(Q), that is stable to
variations in the forcing and initial conditions.

Proof. 1. Existence. We use the functional method.
Denote the ith term of the left-hand side of the identity (23)
by , ai(φ,g), i=1,2,…,7, and the right-hand side term of (23)
by a8(f,g). For a given g of the set V, each left-hand term
ai(φ,g) is a linear bounded functional (of φ) in H(Q),
i= 1,2,…,7. Thus, for example,

  a g g e g e C gt t
t

t
t

t H1 1( , ) , ( )φ φ φ φδ δ≡ ≤ ⋅ ≤ ⋅− −   , (25)

a g g e g e ex tx
t

tx
t

x x
t

x2 ( , ) ,φ µφ β φ β ψ φδ δ δ≡ ≤ ⋅ = ⋅− − −

        ≤ ⋅ ≤ ⋅ ≤ ⋅β ψ φ β ψ φ φx x H H H
C g2 ( )   , (26)
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and

a g U g e dSdtn t
t

S

T

S S H H5

0

( , )φ φ β φ ψ β ψ φδ≡ ≤ ≤ ≤−

+
∫∫

            C g
H5( ) φ (27)

where ψ=gt∈H(Q) because of (22). The boundedness of the
forms ai(φ,g) for i= 3,4,6,7 may be shown in a similar man-
ner. Therefore, by Riesz theorem (Kolmogorov and Fomin,
1968), the ith functional is represented as the inner product

         a g gi i H
( , ) ,φ φ= (28)

with some uniquely determined element gi of H(Q)
(i=1,2,…,7). The one-to-one correspondence g→gi defines
a linear operator Ai acting from V to H(Q): gi = Aig
(i=1,2,…,7).

Further, according to (2), the condition F(t) ∈L2(0,T)
implies f(r,t) ∈L2 (Q), and hence, due to Lemma 1, f(r,t)
∈H(Q). Thus for a fixed F(t) ∈L2 (0,T) (i.e., for a fixed f )
the term a8(f,g) is also a linear bounded functional (of φ)
over H(Q):

a f g f g e f g C f gt
t

t H8 8( , ) , ( )≡ ≤ ≤−δ         (29)

and, by Riesz’ theorem, may be represented as

    a f g R g
H8( , ) ,= (30)

with some uniquely determined element R of H(Q). Let

A Ai

i

=
=
∑

1

7

. Operator A acts from V to H(Q). Then identity

(23) can be written as

                               φ, ,Ag R g
H H

=   . (31)

To complete the proof of the existence part of the theo-
rem we will need the following statement.

Lemma 2. Let G⊆H(Q) be the domain of values of the
operator A, that is, A acts from V to G. Then the inverse
operator A-1 defined on the domain G exists and is bounded.

Proof. We prove Lemma 2 if we show that

             g Ag e g g
H

t
H

, ,≥ −1
2

δ (32)

for each g of the set V, and some sufficiently large δ>0. In-
deed, by (32), Ag=0 implies g=0, that is, A-1 exists and is
bounded, since

A
A w

w

g

g AgH w G

H

H V

H

H H

−

∈

−

∈
= = ≤1

1 2

Sup Sup
φ

  
φ

δ

∈
≤

V

H

H

Tg g

g Ag
eSup

,

,
2 (33)

where w=Ag. Let us now prove inequality (32). Let g belong
to V, and hence, g(r,0)=0. Then

      a g g g g e g et t
t

t
t

1

2
2( , ) ,= ≥− −δ δ

 , (34)

a g g g g e e g r T drx tx
t t

x

D

2
21

2( , ) , ( , )= =− − ∫µ µδ δ

+ −∫δ µ δ
2

2g e drdtx
t

Q

− − −≥ −∫1
2

1
2

2 2µ δα βδ δ

t x
t

Q

x
tg e drdt g e( )

2

,

 (35)

a g g g g e g ey ty
t

y
t

3

2

2
2( , ) ,= ≥− −µ δαδ δ

, (36)

a g g g g e e g r T drt
t t

D

4
21

2( , ) , ( , )= =− − ∫σ σδ δ

+ − − −− ≥ −∫ ∫δ σ σ αδ βδ δ δ

2
1
2

1
2

2 2
2

2g e drdt g e drdt get

Q

t
t

Q

t( ) , (37)

  a g g U gg e dSdt e U g r T dSn t
t

S

T
t

n

S

5

0

21
2( , ) ( , )≡ =− −

+ +
∫∫ ∫δ δ

      +
+ +
∫∫ ∫∫− −( ) − ( )δ δ δ

2
1
2

0

2

0

2
2 2U ge dS U ge dSn

S

T
t

n t

S

T
t( )

≥ − −1
2 0

2
2( )δα β
δ

ge t

S
  . (38)

In the last estimate we used the mean-value theorem

         U ge dS gen

S

T
t t

S+
∫∫ − −( ) =

0

2

0

2
2 2
δ δ

α (39)

where a0>0, since Un is non-negative on S+. Note that if S+ is
a coastline (Un=0) then the fifth left-hand term in (23) is ab-
sent, and hence, (38) is also absent. To estimate a6(g,g) and
a7(g,g) we will use the ε -inequality:

   a g g g e g eug g ex t
t

t
t

x
t

6

2 2
2 2

4( , ) ,≡ ≤− − −+δ ε
δ δβ

ε , (40)
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    a g g g e g evg g ey t
t

t
t

y
t

7

2 2
2 2

4( , ) ,≡ ≤− − −+δ ε
δ δβ

ε . (41)

Let us select ε so that 1 2 1
2− ≥ε , and take δ large

enough so that δα β ε− + ≥( )1 1
4 1 and δα β0 1− ≥  are satis-

fied. Then we obtain

g Ag a g g a g g a g g
H i

i

i i

ii

, ( , ) ( , ) ( , )= ≥ −
= ==
∑ ∑∑

1

7

6

7

1

5

≥ − + − + +
− − −( ){ }








( )1 2 1
2 1 1

4
2 2 2

2 2 2
ε δα β ε

δ δ δ
g e g e g et

t
x

t
y

t

+ 1
2

1
2

1
20

2 2
2 2( ) ( ) ,δα β δα β
δ δ δ− + − ≥− − −ge ge e g gt

S

t T
H .

(42)

To derive the last inequality, we used definition (17)
and Lemma 1. Thus Lemma 2 is proved.

Let us now proceed with the proof of the theorem. By

continuity, operator A-1 is defined in G  where G  is the clo-
sure of G in the norm (17). Let L be the orthogonal comple-

ment of the set G in H(Q). We extend A-1 from G  to H(Q) by
defining A-1 w=0 for any w of L. As a result we obtain a

bounded operator ̃A−1 defined on the whole space H(Q):

Ã e
H

T− ≤1 2 δ
. The operator (̃A−1 )* adjoint to Ã−1  is

uniquely defined and has the same norm as Ã−1. Let Ag=w,
where w∈G. Then, because of (31),

φ φ, , , , , ˜w Ag R g R A w R A w
H H H H H

= = = ≡− −1 1
  .

(43)

Instead of searching for a solution φ from (30) when w∈G,
let us impose a more restrictive condition. The equation

φ, , ˜ ˜ ,
*

w R A w A R w
H H H

= ( ) = ( )− −1 1
(44)

is satisfied for any w ∈ H(Q). This is possible if and only if

φ = ( )−˜ *
A R1 . With such a φ, (43) and the equivalent original

identity (23) are also satisfied. Thus the existence of a gener-
alized solution is proved.

2. Uniqueness and stability. Let φ(r,t)∈ H(Q) be a general-
ized solution of problem (1)-(6). Then

  g r e d
t

= ∫φ τ τδτ( , )
0

(45)

belongs to set V. Substituting (45) into (23), we obtain after
some simple transformations that the generalized solution
satisfies the inequality

1
2

1
2 0

2 2

2 2 2 2φ α φ φ φ φ( , ) ( , ) ,
( ) ( )

r T r f
L D x y L D

+ +



 ≤ +

(46)
where

            
φ φ( , ) ( , )

( )
r t r t dr

L D
D

2

2 2= ∫  . (47)

Inequality (46) leads to

1
2 2 2

2 2 2
φ α φ φ φ ττ( , ) ( , )

( ) ( )
r T r

L D x y L D
+ +





≤
≤ ≤ 0 T
max  ×

T f r T f r
L D Q L D

+ ≤ +( ) ( )1
2

1
20 0

2 2
φ φ φ( , ) ( , )

( ) ( ) (48)

where

φ φ τ φ φτQ T L D x yr≡ + +≤ ≤0
2

max ( , )
( ) (49)

is the energetic norm of a Banach space (Ladyzhenskaya,
1973). Using the fact that each term of the left-hand side of
(48) is not larger than the right-hand side, it is easy to get the
estimate

           φ α
φ

Q L D
T f r≤ +





+( )2 2 1
2 0

2

2
( , )

( ) (50)

that relates the solution norm (49) to the norms of the forc-
ing and initial condition. Note that due to (4), the last term in
(50) is zero. Since problem (1)-(6) is linear, estimate (50)
implies the uniqueness of the generalized solution as well as
its stability to variations δf(r,t) and δφ(r,0) in the forcing and
initial condition, respectively:

       δφ
α

δ δφ
Q L D

T f r≤ +





+( )2 2 1
2 0

2

2
( , )

( ) . (51)

The theorem is proved.

Corollary. Let P(r,t)∈L2(Q), and the coefficients of the ad-
joint problem (9)-(11) satisfy all the requirements of Theo-
rem 1. Then in the space H(Q), the adjoint problem has the
only generalized solution stable to variations (errors) in the
forcing and the initial conditions.

CONCLUSIONS

The spreading of oil spilling from a damaged oil tanker
is considered in a limited sea area when there is oil flowing
across the liquid boundaries. We formulate a two-dimensional
oil transport-diffusion problem and its adjoint with the bound-
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ary conditions that are correct both mathematically and physi-
cally. The existence, uniqueness and stability of a general-
ized solution of the oil transport problem and its adjoint are
proved for certain functional classes.

Equivalent direct and adjoint estimates of the average
oil concentration in ecologically important zones are given
for studying the consequences of the oil spill. The direct es-
timate (12) based on the oil transport problem solution is
preferable when a comprehensive oil information is required
in the whole domain D. On the other hand, the adjoint esti-
mate (14) explicitly relates the average oil concentration in a
zone to the oil spill rate through the adjoint solution at the
accident site. This estimate is convenient for studying oil
concentration variations caused by variations in the oil spill
rate or/and the accident point. Several examples given in
Skiba (1996a) show how to decide between dual estimates
in various situations, or to modify the adjoint estimate for
prediction purposes. These estimates can also be applied if
oil enters the marine environment from other sources (off-
shore production, liquid waste, etc.).
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