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RESUMEN
El fondo del mar puede propagar ondas acopladas de gravedad, acústicas y de Rayleigh. Se presentan expresiones para la

dispersión y el flujo de energía, y se demustra que las ondas se dividen en dos ramas. La rama de lata velocidad tiene estructura
multimodal y un corte de alta frecuencia.
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ABSTRACT
It is shown that the Ocean-Earth crust interface can propagate gravity-sound Rayleigh waves. Dispersion properties of

waves and flux of energy are derived. It is shown that the waves split into low and fast velocity branches. The fast branch has a
multimode structure and has a cutoff in frequency and wave number. Numerical solutions are discussed.

KEY WORDS:  Earthquake, Rayleigh wave, gravity-sound wave.

1. THEORY

Consider a liquid layer of thickness h (Ocean) over a
solid halfspace (Figure 1). A surface Rayleigh wave propa-
gates along x due to a seismic excitation. The properties of
the Rayleigh wave are strongly modified because of contact
with the water layer. In general the problem requires the si-
multaneous joint solution of equations from hydrodynamics
and the theory of elasticity. The basic factors are gravity,
compressibility of the liquid displacement of the free sur-
face and rigitity of the elastic halfspace. Simplifying assump-
tions include incompressibility in the liquid or absolute ri-
gidity.

However, in a real situation such approximations may
not be valid. Thus, if the phase velocity of the Rayleigh wave
approaches the velocity of the acoustic wave in the liquid, it
is not possible to consider the liquid as incompressible. This
may be seen from the numerical estimations below. The elas-
tic properties of the liquid layer and the solid halfspace must
be taken into account.

Of special interest is the neighborhood of the intersec-
tion of the dispersion curve of the Rayleigh wave with the
strongly dispersed branches of volume modes of sound waves

in the liquid layer. At these intersections the waves become
strongly coupled and lose their individuality.

The equations of motion consist of coupled equations
of elasticity and of hydrodynamics for vectors of mechani-
cal displacement U = {Ux, 0, Uz)} and of velocity in the liq-
uid υ = {υx, 0, υz)}. In the y direction the system is consid-
ered as uniform (Figure 1).

The elastic equations of motion U are:
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The equations of hydrodynamics are
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where γ and ρ are the mass densities in the solid and the
water, p = (ρ/ρ0)A is the pressure in the liquid, ρg is the gravi-
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tational force, and µ, λ are Lame’s constants. For small dis-
placements and after linearization of equations (1) and (2)
all variables may be assumed proportional to exp (i(ωt-kx)).

The solution of the linearized equations (1) and (2) may
be written
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A1,2 and C1,2 are arbitrary constants, x=ωh/ct and y = kh.

Introducing the boundary conditions of continuity of
normal pressures and normal velocities across the boundary
ξ=0, and the condition of free surface of the liquid at ξ=1,
we obtain the general dispersion equation of coupled acous-
tic-gravity Rayleigh waves
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As Β→0 equation (7) describes the classical Rayleigh wave
when the phase velocity is CR, and the acoustic-gravity wave
in the liquid. However, in general the value B is of order 102-
103 and equation (5) becomes complicated. Consider some
asymptotic cases admitting a simple analytical solution. For
an incompressible liquid we may put cs→∞ and equation (7)
η3,4=0, ϕ = y, r1 = 2y2. In the case of short waves kh → ∞ and
equation (7) can be rewritten more simply as

      ∆ ∆1 2 0 = (13)

where ∆1=y-x2B/2 and ∆2=Dr+(ρ/γ)2τ1x2/B  .

Fig. 1. Geometry of the Ocean-Earth system.
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As seen from (13) two independent waves can propa-
gate. One wave (with ∆1=0) obeys ω2=kg, and correspond to
a surface gravity wave in an incompressible liquid (Whitham,
1974). The second branch with ∆2=0 describes a Rayleigh
wave on a solid halfspace with a modified dispersion law
because of the presence of the water layer.

However, the real situation seems more complex for
two reasons. First, the velocity of sound in the liquid is close
to the velocity of Rayleigh waves cR≈cS and therefore we must
take into account the sound waves in both materials. Sec-
ond, because of  the finite thickness of the liquid layer the
waveguide P-modes can propagate even in incompressible
water. These modes exist if the frequency of the wave ex-
ceeds a critical value which depends on the thickness of layer.
The dispersed branches of these modes begin to intersect the
Rayleigh wave dispersion curve (see Figure 2). This results
in a significant complication of the physical picture of propa-
gating waves in the system.

Some especially interesting phenomena arise at the
points of intersection of the dispersed branches of P-modes

with Rayleigh waves. However, in general it is impossible to
obtain analytical solutions of the dispersion equation (7). A
numerical analysis of equation (7) is shown in Figures 2 to
6. The numerical calculations are carried out for the follow-
ing values of the parameters: ci= 6 • 103m/s, ct = 4 • 103m/s, cS

= 1.5 • 103m/s, γ = 3g/cm3, ρ = 1g/cm3. In this case we obtain
η1 = 0.67, η3 = 2.7, η2 = 0.04, η4 = 0.15, B = 650. It is clear
that parameter B is not small; therefore equation (7) must be
solved numerically.

2. DISPERSION

The numerical solution of the dispersion equation (7)
is shown in Figure 2. Two different waves can propagate.

(1) The gravity-acoustic branch shown as curve a corresponds
to slow surface waves on a liquid layer.

(2) The next branches shown on Figure 2 (b,c), correspond
to modified Rayleigh waves. For these branches an in-
tersection of the Rayleigh wave with branches of P-

Fig. 2. Dispersive characteristics of a gravity wave (curve a) and a coupled Rayleigh wave (curves b,c) obtained as numerical solutions of Eq.
(7). Dashed curves e and g correspond to ψ≡-iϕ=(2n+1)π/2, where e is for n=0, g is for n=1. They describe the P-waves for a rigid bottom.
Dotted curves d, f and h correspond to ψ≡-iϕ=nπ, where d is n=0, f is n=1, h is n=2, and i=(-1)1/2. Line i corresponds to the dispersive law
ω=kct, where ct is the velocity of shear waves in the halfspace. Line j corresponds to the dispersive law ω=kCR, where CR is the velocity of
Rayleigh waves on the halfspace. Points I and II are the intersections of independent dispersive branches of free Rayleigh waves on the bottom
with the P-wave in the liquid layer. Numerical solutions show that these branches repel each other due to interactions. The distribution of wave

fields for some point on the dispersive branches is shown in Figures 3 to 6.
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waves in the liquid layer takes place. At the points of
synchronism their dispersion branches (domains I and
II ) are repellent and the waves become strongly coupled.
The normal modes of the liquid layer cause cutoff fre-
quencies, and also a cutoff on wavenumbers due to cou-
pling with the Rayleigh wave. At small wavenumbers
these waves become “leaking” waves.

The propagating waves in the system are superposi-
tions of independent wave motions with different dispersion
laws. The appropriate parameter for the classification of wave
modes is ϕ in (7). For the slow branch we have ϕ2>0, and the
argument of tanh in (7) is a real function of frequency. These
waves are surface modes (see Figure 3).

For waveguide P-modes we have ϕ2<0 and the argu-
ment of tanh in (7) is imaginary. If we put ϕ=iψ, the hyper-
bolic expression tanh ϕ/ϕ=tan ψ/ψ becomes a trigonometri-
cal function. For these modes the distribution of pressure
and velocity oscillates with depth (Figure 4 to 6).

As the waveguide modes are located near ψn=(2n+1)π/
2, n = 0,1,2..., it is convenient to classify the wave branches
by specifying the value of ψn. In Figure 2 the corresponding
curves are dashed. The dotted lines show the case of absence

of body waves, with values ψn=πn. At such points we may
expect no perturbation of the Rayleigh waves due to the water
layer. Case n=0 corresponds to the slow gravity surface wave.

The dependencies of the wave values on depth for vari-
ous frequencies can be seen more clearly in Figures 3 to 6 as
a function of the pressure p, the velocity v and the flux of
energy P.

The Rayleigh wave is dispersed because of the influ-
ence of the water layer. In the vicinity of the interaction of
Rayleigh and waveguide P-modes the dispersion properties
become essential. Where waveguide modes are absent, the
dispersion of waves is rather insignificant. Thus the wave
field of this wave is rather complicated.

Let us consider the distribution of amplitudes, veloci-
ties and average fluxes of energy in the vertical coordinate z
(Figures 3 to 6). For average fluxes of energy we may use
the expression

Pk=-(1/2)Re(pkj ∂uj/∂t)

and for the liquid layer

Fig. 3. Distribution of pressure, velocity and energy flux for the slow branch of gravity and Rayleigh waves in Ocean and Earth in dimen-
sionless units (a=normal pressure; b=tangential flux of energy; c=vz and d=vx. This case is ϕ → 0 in Eq. (7).
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Fig. 4. Distribution of pressure, velocity and energy flux for fast branch of gravity-acoustic and Rayleigh waves in Ocean and Earth in
dimensionless units (a=normal pressure; b=vertical flux of energy; c=vz and d=vx, for ψn=-iφn=π/2 near the first intersection of branches of P-

waves and Rayleigh waves (domain I) in Fig. 2.

Fig. 5. Distribution of pressure, velocity and energy flux for fast branch of gravity-acoustic and Rayleigh waves in Ocean and Earth (a=normal
pressure; b=vertical flux of energy; c=vz and d=vx. Case ψn=-iφn=π near the intersection of curve f with Rayleigh waves (see Fig. 2).
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Pk=(1/2)Re(pvk) .

On Figures 3 to 6 we show the wave field for the slow
and fast wave branches for some points of the dispersion
curves. In Figure 3 the slow branch has a surface wave char-
acter and practically does not couple with the Rayleigh wave
on the ocean floor. For this branch the curve of vx,z practi-
cally coincide. The flow of energy is concentrated in the layer.
The picture becomes more complex in the vicinity of an in-
tersection of branches and the formation of coupled P-wave
and gravity-Rayleigh wave (Figure 4 to 5). In Figures 4 to 6
the waves become internal: the pressure p and the flow of
energy P is concentrated in the vicinity of the water - sub-
strate interface. Also the distribution of velocity components
v in the layer is interesting.

From Figure 4 to 6 the velocity v on the free surface
has only a normal component (vz ≠ 0). However, with depth
there begins to prevail the longitudinal component due the
change of orientation of the velocity vector. The pressure in
the liquid increases with depth. However, near the bottom
pressure reaches a maximum and the decreases. This is due
to the Rayleigh wave on the ocean floor.

When ψn=ψ1=π the main wave is the Rayleigh wave,
and from Figure 5, pzz=0 at the boundary ξ=0. In this case the
influence of the liquid layer is small because the region lies
outside of the dispersed branches of P-waves in a liquid. Case

ψn= 3
2 π is shown in Figure 6. For this branch the distribution

of all values has an oscillating character. As the modes of
high order are usually strongly absorbed, they have little in-
fluence on seismic propagation. For the 1969 Kurile earth-
quake recorded in Honolulu (Weaver et al., 1970) only the
fast branch of the seismic excitation propagated along the
interface Ocean-Earth crust was recorded. For such strong
seismic excitation, a preliminary nonlinear analysis should
be required.

DISCUSSION

The propagation of waves in semi-confined and lay-
ered media is a classical problem of hydrodynamics and the
theory of elasticity (see Lamb 1930, Ewing 1957). However,
the physics even of rather simple wave motions in isotropic
layered systems can be rather complex. Because of the pres-
ence of several characteristic scales, including wavelengths
and thickness of layers, the waves in such systems have es-

Fig. 6. Distribution of pressure, velocity and energy flux for fast branch of gravity-acoustic and Rayleigh waves in ocean and Earth in
dimensionless units (a=normal pressure; b=vertical flux of energy; c=vz and d=vx. Case ψn=-iφn=3π/2 near the second intersection of branches

of P waves and Rayleigh waves (domain II in Fig. 2).
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sentially dispersive properties. Similar problem was stud-
ied in Ewing, 1957 as applied to microseismic theory. We
will concentrate our attention to nonlinear waves propaga-
tion.

The dispersive equations are rather bulky. For sim-
plification one of several wave form are selected and fac-
tors such as compressibility are neglected. However, this
may obscure essential relationships between waves of vari-
ous kinds. Often is assumed that the fluid is incompress-
ible for gravity waves on its surface. This approach is com-
mon for waves propagating in combined Ocean-Earth
models when the velocity is small.

In a liquid layer, gravity and sound waves may ap-
proach the velocity of Rayleigh waves on the bottom. For
a hard bottom the phase velocity of sound in the liquid
may tend to infinity, especially near points of frequency
cutoff. However, in a more realistic elastic halfspace the
velocity of these waves is restricted to the velocity of
Rayleigh waves because of radiation into the halfspace.
This results in frequency and wave number cutoffs.

We solve the problem in a more general form by writ-
ing down the complete equations of hydrodynamics for
the water layer and the equations of elasticity for the bot-
tom. This accounts for all the main physical factors with-
out neglecting the constraints due to scale. This is a more
exact theory, which includes the various waves in the con-
nected boundary system.

If we assume a compressible liquid and hard bottom,
we may introduce gravity waves on the surface of the liq-
uid, or internal gravity waves in the liquid. Such waves
may cause elastic displacements of the bottom and the
waves on the bottom may cause a response in the water
layer. Thus an incompressible liquid is a zero-order ap-
proximation for the coupling constant ρgh/µ <<1. This ap-
proximation is good when µ→∞. Otherwise if ρgh/µ >>1(in
the case of deep water, h→∞) then the resulting wave pro-
cesses become spatially shared. But this approach is no
longer valid for a water layer of finite depth h. It does ap-
ply to internal waves in a liquid.

In general it is not possible to consider P waves in
the water layer and in the elastic halfspace as independent,
and it is necessary to solve the complete system of the con-
nected equations.

Lomnitz et al. (1999) have found that coupling be-
tween P waves and Rayleigh waves can occur when the
two modes share the same phase velocity at an interface.
They show that a monochromatic mode of large amplitude

may generate stationary patterns and may be responsible
for earthquake damage.

4. CONCLUSION

The propagation of waves in a two-layer Ocean-Earth
model has been described. We provide a physical picture of
the structure of coupled waves. It is shown that the Rayleigh
wave has increased dispersion due to the influence of the
water layer.

A general theory should include such factors as inho-
mogeneous density distribution in both media and attenua-
tion (Whitham, 1974). However, these factors yield only a
small contribution to the phase velocity.

A major question is the analysis of propagating waves
in the presence of nonlinearity due to large earthquakes
(Weaver et al., 1970; Yuen et al., 1982). Such perturbations
can produce solitary waves or solitons. The propagating of
solitons can be investigated in details only after clarifica-
tion of the main mechanisms of nonlinearity.
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