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RESUMEN
El sistema ionosférico se analiza y se modela usando la técnica tomográfica, formulada en tres segmentos: el sistema de

adquisición de datos ionosféricos, el modelo y el algoritmo de reconstrucción. Los límites de resolución del sistema se analizan,
seguido de una medición cuantitativa de la capacidad de resolución del sistema completo.
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ABSTRACT
The ionospheric system is analysed and modelled using tomographic imaging, formulated in three segments: the ionospheric

data acquisition system, the model, and the reconstruction algorithm. The resolution limit of the system is analysed, followed by
a quantitative measure of the complete imaging system’s resolving capability.

KEY WORDS:  Ionosphere, tomography, imaging, reconstruction, algorithm.

INTRODUCTION

Tomographic imaging systems are based on the Radon
transform (Radon, 1917) and Fourier optics. A complete
imaging system consists of a data acquisition system, a model,
and a reconstruction algorithm. These imaging systems have
been used in many different disciplines. Medical technology
uses Computer-Aided Tomography in CAT scanners
(Scudder, 1978; Macovski, 1983; Lewitt, 1983, Censor,
1983), Nuclear Magnetic Resonance (NMR) or Magnetic
Resonance Imaging (MRI) (Hinshaw and Lent, 1983; Cho
et al., 1982) and ultrasonic imaging (Havlice and Taenzer,
1979; Greenleaf, 1983; Mueller, Kaveh and Wade, 1979).

A new application of tomography has been proposed
for the earth’s ionosphere (Austen et al., 1988). We analyse
the feasibility of tomographic reconstructions, the resolution
limitations of ionospheric imaging systems and the sensitivity
of the resolution to various parameters. The ionosphere both
enhances and degrades the ability to communicate using radio
signals. Reflection of signals depend on the electron density
distributions at specific positions or along specific directions
in the ionosphere. Satellite techniques allow determination
of the electron density in the vertical strip.

IONOSPHERIC MEASUREMENTS

Methods of measuring the electron density in the
ionosphere include the examination of galactic radio
emissions and reflecting signals off the moon to analyse the

ionosphere’s effect on various signals. The four most widely
used techniques for obtaining the electron density in the
ionosphere are ionosonde measurements, incoherent scatter
radar, Faraday rotation and differential Doppler methods.

The differential Doppler technique examines the effect
of the ionosphere on the phase of two harmonic frequency
signals. The signal path length of a transmitted wave received
at a ground station is proportional to the reciprocal signal
wavelength in the ionospheric medium. Let the phase path p
be the signal path length received from the transmitter, and
let λ

m
 be the signal wavelength and ds the differential path

element, thus

p ds m= ∫ ( / )λ
ρ

. (1)

In this way the phase path is a nondimensional quantity.
This is a convenient expression to use with geodetic receivers
of the Transit satellite navigation system.

The wavelength of the signal in the ionospheric medium
can be expressed in terms of the wavelength in free space λ

o

and the refractive phase indexes of the ionosphere n
phase

 as

    λ
λ

m
phasen= 0

 . (2)

The refractive phase index n
phase

 is a function of the
plasma frequency, f

p
, and of the frequency f of the signal
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which is propagated through the plasma. The index can be
approximated by the first two terms of a binomial expansion
of the function

  n
f

fphase
p−̃1−
2

22
 . (3)

The plasma frequency in Hz can be approximated in
terms of electron density N

e
  in electrons per cubic meter by

    f Np e
2 80 62˜ .−  . (4)

The phase path can now be written in terms of electron
density along the propagation path using (1) to (4)

p
N

f
dse= −∫1 1 40 3

0
2λ ( . )  . (5)

By examining the difference between the phase paths
of two harmonic signals, the effect of the ionosphere can be
found. Let f

1
 and f

2
 be the frequencies of two harmonic

signals. The ratio of these frequencies will be a constant. As
the two frequencies are related by an integer rate, a weighted
difference of their respective paths p

1
 and p

2
 can be defined:

   ∆p p
f
f p= − 



1

1

2
2  . (6)

Without the effect of the ionosphere, this weighted difference
would be zero. Substituting into the expressions for the phase
paths, it can be seen that this difference is directly proportional
to a line integral of the electron density along the propagation
path:

∆p
n

ds
f
f

n
dsphase phase= − 



∫ ∫1

01

1

2

2

02λ λ
ρ ρ

 . (7)

The wavelength in free space is given by the ratio between
the speed of light c and the frequency of the signal, λ

oi
 = c / f

i

for i = 1, 2 . Thus (7) can be further simplified to obtain the
relationship of the electron density

   
∆p k N dse= ∫

ρ
(8)

where

k
f

c f f
= −







40 3 1 11

2
2

1
2

.
 . (9)

The weighted difference of the phase paths is a constant, k,
times the Total Electron Content (TEC) along the propagation
path defined by

     
TEC N dse= ∫

ρ
. (10)

The differential Doppler method of imaging the electron

density uses the total electron content and corrects it for
angles, thus obtaining the total electron content in a vertical
strip in the ionosphere (Rishbeth and Garriott, 1969;
Hargreaves, 1979; de Mendonca 1962; Ross, 1960).
Considerable work has been done on improving the accuracy
of the Faraday rotation and differential Doppler methods
(Garriott, 1960; Yeh and Swenson, 1961; de Mendonca, 1962;
Burgess, 1962). Since these techniques are based upon the
measurement of total electron content (TEC) along a path
they can give the electron density in only one dimension.
They cannot provide information about the electron density
at various altitudes. Incoherent scatter techniques can detect
electron concentrations along the signal path; however, this
also results in one-dimensional information. The importance
of ionospheric tomography lies in imaging a two-dimensional
region of the ionosphere.

IONOSPHERIC TOMOGRAPHY

Tomographic imaging systems are based upon the idea
of reconstructing a source from data taken in multiple views
of the image area. In some tomographic applications, three-
dimensional objects are reconstructed from two-dimensional
data. Computer-Aided Tomography (CAT) is used in systems
that are suitable for x-ray illumination (Scudder, 1978; Lewitt,
1983; Censor, 1983). Applications range from the medical
professions for diagnostic purposes, to geophysics for
determining structures in the earth, and even to imaging
nuclear fuel pin bundles (Macovski, 1983; Sanderson, 1979;
Yeh and Swenson, 1961). Diffraction tomography is used
where diffraction effects of the illumination wavefield must
be considered, such as remote sensing and nondestructive
evaluation (Munson et al., 1983). Synthetic Aperture Radar
(SAR) is used for target location (Elachi et al., 1982; Dines
and Lytle, 1979; Austen et al., 1988) and Nuclear Magnetic
Resonance (NMR) imaging is a medical tool (Hinshaw and
Lent, 1983; Cho et al., 1982). In CAT, the illumination source
is a set of x-ray beams, and the detected signal is a projection.
The principles of CAT directly apply to the ionosphere.

Computer-Aided Tomography (CAT) is based on the
work of J. Radon (1917). He proved that a two-dimensional
distribution can be uniquely reconstructed from an infinite
number of projections. In x-ray parallel beam tomography,
x-rays are emitted from a plane source, attenuated by the
object to be imaged and detected by receivers in a plane which
lies parallel to the source plane. The received data is an
attenuated shadow of the object. Projections are taken from
different angles by rotating the object or the source and the
receiving planes. Since shadows of an object are identical
from opposite views of the object, projection covering 180°
is sufficient (Figure 1).

MATHEMATICAL MODEL

To develop a mathematical model of the system, denote
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the source magnitude as I
o
, the object attenuation profile as

g(x,y) and the received magnitude as I(x) . The problem is to
find g(x,y), given I(x) , with I

o
 known (Macovski, 1983). I(x)

is related to a line integral of the object attenuation profile
along the path of the x-ray beam as

   I x I e
g x y dy

( )
( , )

=
−∫

0
 . (11)

Define a new function

      p x n
I

I x g x y dy( ) ( ) ( , )= 



 = ∫1 0

 . (12)

For any point x
o
 , p(x

o
) is a line integral of the attenuation

produced by the object along a ray path and is the shadow of
the object at x

o.
 Thus p(x) is the complete shadow and is

called a projection. The data acquisition system obtains
samples which are often called projection data.

To obtain multiple projections, the object is rotated and
the line of integration is taken at different angles. For a
projection at an angle θ, define a new rotated coordinate
system with axes, X-Y, as shown in Figure 2. The two
coordinates are related as follows:

        X x y x X Y= + = +cos sin cos sinθ θ θ θ     (13)

        Y x y y X Y= − + = +sin cos sin cosθ θ θ θ      . (14)

The projection will then be a line integral along Y, namely

     p X g X Y X Y dYθ θ θ θ θ( ) ( cos sin , sin cos )= − +∫ (15)

By varying θ, expressions for all the projections can be
obtained.

The Central Slice Theorem is the basis for the
reconstruction of images from projection data. Consider a
projection  of an object taken at an angle θ. The Central Slice
Theorem states that the spectrum of this projection is a slice
of the spectrum of the object, passing through the origin at
an angle θ. To illustrate this relationship, consider a projection
taken at an angle θ with a rotated coordinate system defined
as before. A similar rotated coordinate system can be defined
in a spatial frequency domain. Let Fx and Fy be the frequencies
in the rotated system, and let fx and fy be the frequencies in
the unrotated system. By the Central Slice Theorem the
frequencies are related as:

      F f f f F Fx x y x x y= + = −cos sin cos sinθ θ θ θ    (16)

     F f f f F Fy x y y x y= − + = −sin cos sin cosθ θ θ θ    (17)

The object g(x,y) can be written equivalently in the rotated
coordinate system as  G

_
(X,Y). Using the rotated coordinate

system, the integration along the ray paths becomes an
integration along Y, or

p X G X Y dYθ θ( ) ( , )= ∫  . (18)

The spectrum of the projection can be expressed in terms of
the object spectrum as

         P f p X e dXj fX
θ θ

π( ) ( )= −∫ 2  . (19)

The projection function can be expressed in terms of the
original source distribution as

P f G X Y e e dYdXj fX j Y
θ θ

π π( ) ( , )= ∫∫ − −2 2 0  . (20)

Fig. 1. Standard parallel beam tomography system.

Fig. 2. Definition of rotated coordinate system.



V. H. Ríos and F. R. Soria

272

The projection spectrum is then the object spectrum evaluated
at Fx = f and Fy = 0, or

    P f G fθ θ( ) ( , )= 0  . (21)

This represents one slice of the object spectrum at the
same rotated angle. This slice can also be written in terms of
the original coordinate system as

            P f G f fθ θ θ( ) ( cos , sin )=  . (22)

This relationship is the Central Slice Theorem and is
illustrated in Figure 3. Thus can be reconstructed using an
algorithm based upon the Central Slice Theorem. Ideally, an
infinite number of projections would be  taken so that the
slices would cover the entire spectrum of the object. Then a
two-dimensional inverse Fourier Transform would give an
exact reconstruction of the object.

Define the polar coordinate system

f R R f f fx y x y= = +cos ( ( ) )θ     sgn 2 2 1
2 (24)

  f R tg
f
fy
y

x
= = 











−sin modθ θ π     1
(25)

    df df R dRdx y = θ (26)

(R, θ) in the spatial frequency domain in terms of the
coordinates (fx, fy).

Then, the inverse Fourier Transform can be written as

g x y G R R e R dRdj xR yR( , ) ( cos , sin ) ( cos sin )=
−∞

∞
+∫∫

0

2
π

π θ θθ θ  .

(27)

By using (22), the inverse Fourier Transform can be written
in terms of the spectrum of the projection instead of the object
spectrum as

           g x y P R e R dRdj R x y( , ) ( ) ( cos sin )=
−∞

∞
+∫∫ θ

π
π θ θ θ

0

2
. (28)

The inner integral of this equation, fθ (r), is the Inverse Fourier
Transform of the product of the projection spectrum, Pθ(r),
and the enhancement filter, |R|, evaluated at x cos θ + y sin θ,
or

f r F T P R Rθ θ( ) . . ( ( ) )= −1  . (29)

This integral is referred to as the backprojection integral.

In the Filtered Backprojection Algorithm, |R| can be
thought of as a compensation filter for the distribution of the
density of backprojected rays. To illustrate, consider the
reconstruction of a point source. Figure 4 shows an x-ray
tomography system with rays backprojected through the
image area. The density of rays increases towards the center
of the image. |R| simply compensates for this effect.

Mathematically, the smearing effect can be seen by
examining the reconstruction from only one projection at an
angle of θ=θ0. The object would be reconstructed from this
projection directly since the integral in equation (28) reduces
to a direct equality, namely

g x y f x y f X( , ) ( cos sin ) ( )= + =θ θθ θ
0 0

 . (30)

For any point in the object, its value is the value of the
filtered projection at the corresponding location in the
projection. The corresponding location for a point in the
object is shown in Figure 5.

Fig. 3. Central Slice Theorem.

RECONSTRUCTION USING THE
BACKPROJECTION ALGORITHM

The most common algorithm used for reconstructing
images from projection data is the Backprojection Algorithm.
This algorithm has the adventage of requiring only a one-
dimensional inverse Fourier Transform. The Backprojection
Algorithm derives its name from the step in which each
projection is smeared back across the image area, an operation
referred to as «Backprojection». An enhancement filter is
applied to the projections prior to backprojection either by
multiplication in the frequency or convolution spatial domain.
This filter , H(f)=|f| , and the backprojection operation are
derived from polar transformation of two-dimensional inverse
Fourier Transform of G(fx, fy), i.e.,

             g x y G f f e df dfx y
j xf yf

x y
x y( , ) ( , )

( )= +∫∫ 2π
 . (23)
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Figure 6 shows that, for each projection, the object will
be given the same value, f(Xo), for all point along the line
X=X o since they correspond to the same point on the
projection. This value can be thought of as being smeared
back along this line.

Backprojecting several projections amounts to smearing
each projection across the image area and summing the
contributions from all of the projections.

IONOSPHERIC RECONSTRUCTION ALGORITHM

An ionospheric reconstruction algorithm can be
developed based on the Filtered Backprojection Algorithm
of x-ray tomography. The data received in the Doppler system
lends itself to a tomographic interpretation, allowing a two-
dimensional reconstruction of any slice of the ionosphere
(Austen et al., 1988). This can be seen by an examination of
the data acquisition system. The physical system used for
data acquisition in the differential Doppler method consists

of a satellite orbiting the earth at an altitude of about 1000
km above the earth’s surface, and a set of ground stations
lying in the straight line on the earth’s surface (Figure 7). At
each satellite position, two coherent signals of harmonic
frequencies are transmitted and are received by ground
stations. The data received by each ground station can be
used to calculate the total electron content along the
propagation path between the satellite position and the
ground station. The measured Total Electron Content (TEC)
along this path can be represented by an integral of electron
density along this path. Define N(s) to be the number of
electrons per unit volume and ρ to be the propagation
distance, then

         
TEC N s ds= ∫ ( )

ρ
(31)

Comparing (30) and (12) shows that each TEC value
corresponds to a point p(xo) on a projection. The angle of
the projection on which this TEC value would lie is
determined by the angle of the propagation path. This angle
is defined with respect to x-axis (Figure 8). This coordinate
system is determined by choosing a central receiver as a
point of reference and fixing the origin at the centre of the
earth, with this central receiver lying on the y-axis. By
interpreting the TEC data as a sample on a projection, a
tomographic reconstruction approach can be used.

There are a few assumptions made on the nature of
both the ionosphere and the data acquisition system in this
analysis. First, it is assumed that the electron density does
not fluctuate greatly during the data acquisition. In reality,
the ionospheric system is time varying, and the differential
Doppler data are not taken simultaneously. Second, the
ground stations are assumed to lie on a straight line on the
earth’s surface. If ground stations are not located on a straight
line, it is assumed that a geometric correction will provide
the desired corrections with negligible error. With these

Fig. 4. Density of backprojected rays.

Fig. 5. Projection location corresponding to point in the object.

Fig. 6. Line of point in the object that corresponds to a point in
the projection.



V. H. Ríos and F. R. Soria

274

assumptions, it is possible to reconstruct a slice of the
ionosphere.

It has been shown that an individual piece of data in
the ionospheric system can be interpreted as a sample in a
tomographic projection. In traditional x-ray tomography, the
data are taken as projections from which reconstructions are
made. However, ionospheric data are taken individually.
Therefore, projections must be formed artificially by a process
called reindexing.

The ionosphere data are stored with the TEC value, the
receiver position and the satellite position. From the latter
two, the angle of the propagation path can be determined.
The reindexing process first sorts the data according to their
angle of propagation. The data is then reindexed into
projections by grouping data with similar angles. Figure 9
shows a simplified grouping scenario in which data of various
angles are reindexed into two projections. Since each TEC
value is equivalent to a point on projection, this grouping is
equivalent to gathering data points or rays with the same
projection angle and defining them to be a projection.

However, as shown in Figure 10, the rays in the

ionosphere are not easily reindexed into projections, the
angles of propagation do not naturally fall into separate
projections, thus it is necessary to allow a certain amount of
error during this reindexing to avoid producing projections
containing only one sample. In addition, the geometry of this
system is also unusual since the receivers lie on a concave
curve as opposed to a straight line as in x-ray tomography.
However, the actual locations of the ground stations along
the propagation paths are not crucial since the assumption
that the receivers lie on straight line amounts to increasing
the length of the propagation path, and this extended portion
of the path make zero contribution to the integral.

Each ground station in the data acquisition system
receives signals from many closely spaced satellite positions.
The receiver and satellite positions are not chosen for specific
projection angles, and the actual angles of the propagation
paths usually cover a certain almost continuously range of
values.As a result, in such ranges, the separating factor may
not be the actual angle. Instead, the separating factor may be
the receiver location because, for any one projection, each
receiver can contribute only one data point. Classifying two
data values corresponding to one ground station to a single
projection is equivalent to assigning two values to a single
sample on a projection, which is impossible, therefore, when
a data point is classified into a projection that already contains
a value for that receiver, a new projection must be started. A
simplified example is shown in Figure 11. The projection
angles of rays A1, B2, and B3 are very close; however, B2
and B3 cannot belong to the same projection because both
are data received by receiver B. Therefore, they must be
separated into two projections.

There is also the question of how close the projection
angles should be to be classified together into one projection.
If the classification is made with relatively flexible rules,
then there will be an error in the projection angle. However,
less computation will be required since there will be fewer
projections. On the other hand, if the classification is made
with stringent rules, then most often each projection will
consist of only one data point, but the projection angle will

Fig. 7. Data acquisition system for ionospheric tomography.

Fig. 8. Acquisition of one piece of data.

Fig. 9. Formation of tomographic projections.
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be accurate. This significantly increases the computation
involved since, after the filtering process, the same number
of points will be backprojected across the image for each
projection despite the original number of samples in the
projection.

Another difference from the standard x-ray tomography
system is the non uniform sample spacing. If this uneven
spacing is ignored, the reconstruction will be concentrated
in one area and spread out in another. For example, the
reconstruction of a point source would result in an asymmetric
image. Interpolation can be used; however, the sample
spacing is difficult to choose since the spacing between
receivers on the projection can vary up to a factor of ten.
Choosing a small sample spacing about the smallest spacing
between receivers would require a very large array and would
increase processing time. Choosing a large sample, spacing
would group several receivers that are closely spaced into
one sample.

After reindexing, each projection is then Fourier
Transformed, filtered by the enhancement filter |f| and inverse
Fourier Transformed (Figure 13). The filtered projection is
then backprojected across the image area. In the original
Filtered Backprojection Algorithm the enhancement filter was
referred to as |R| where R was the radial component of the
spatial frequency of the object spectrum. From the Central

Slice Theorem it was shown that the spectrum of a projection
is simply a rotated slice of the object spectrum. Therefore,
the spatial frequency of the projection spectrum is exactly
the radial component of spatial frequency of the object
spectrum at the corresponding angle. Thus, the enhancement
filter is called |f| in this algorithm.

RESOLUTION ANALYSIS

The ionospheric imaging system consists of the data
acquisition system and the reconstruction algorithm. It is
desirable to measure the resolving capability of this imaging
system given the controllable parameters, such as the number
of receivers and the amount of the earth’ surface they cover.
Two different approaches to resolution analysis are presented.
First the system is considered from a holographic point of
view in which an illuminating source is used to measure the
system’s limitations. The analysis results in a resolution index
giving an upper limit to resolving capability of the system.
The second approach uses simulations of point source
reconstructions to obtain a quantitative evaluation for
resolution of this imaging system. In the first approach, only
the physical setup of the receivers is analysed to determine
an upper limit for the resolution of the system. This is a
general imaging system’s approach and is not concerned with
the actual differential Doppler data adquisition system, since
this ionospheric imaging system can be interpreted as a
tomographic imaging system. The resolving capability of
imaging, in general, is determined by the bandwidth of the
signal and the size of the detecting aperture. For any such
system, an upper limit to resolving capability can be found
by considering the limits imposed by the system. The
maximum bandwidth of any signal detected by the system is
determined by the sample spacing. In the ionospheric system,
the maximum sample spacing is the angular aperture, ∆θ,
divided by the number of receivers, N, multiplied by a factor
R which contains the range distance information. This
assumes the ideal case of evenly distributed receivers. The

Fig. 10. Collection of propagation paths in set of ionospheric
data.

Fig. 11. Classification problem in reindexing data.

Fig. 12. Uneven spacing of receivers in a projection.
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maximum angular bandwidth can be defined as follows:

          sample spacing R
N = ∗∆θ (32)

    angular frequency bandwidth N  = ∆θ  . (33)

This bandwidth (BW) is a maximum upper limit since
not all signals will occupy the entire bandwidth.  The other
limit imposed by the system is the size of the detecting
aperture. This is viewed relative to an infinite aperture in
terms of  the energy of detected signals. Although the
receivers in the ionospheric system are not used to form a
receiving aperture, this can be thought of as a measure of the
range of propagation paths. The finite aperture restricts the
angular range of the propagation paths that, in turn, restricts
the range of projection angles. In the infinite case, projections
are available from all angles.

A  measure of resolution can incorporate both limiting
factors (Lee, 1988). Define a resolution index as

Index BW D
R= ∗ (34)

where D is a certainty factor, R is a constant defined as in
(31). D is the normalized energy of the detected signal based
upon the size and relative offset of the detecting aperture.
Although signals are not propagated in the ionospheric

system, this certainty factor can be thought of as an indicator
of the relative size of the aperture.  In the ionospheric system,
if the aperture lies between θ

min
 and θ

max
 ,  then the certainty

factor can be written as

D = −sin sinmax minθ θ
2

 . (35)

This certainty factor ranges between zero and one. For
the limiting case of an infinite aperture, the certainty factor
is one since it is calculated by taking a ratio of the energy of
the detected signal and the energy of the signal detected by
an infinite aperture.  For this index, the larger the value, the
better the resolution.  As the aperture increases in size, the
resolution improves and the certainty factor also increases,
giving a larger index. In the ionospheric system, this index
can be determined in both the x and y directions for any
particular aperture and set of receivers. The index is different
in the x- and y-directions because the detecting aperture has
a different size and relative offset when viewed from the two
directions.  In Figure 14, the detecting aperture ranges from
θ

1
 to  θ

2  
in the x-direction and from θ

1
' to θ

2
' in the y-direction.

The indices can then be written as:

    Index
N

Rx = −(sin sin )θ θ
θ

2 1
2 ∆ (36)

   Index
N

Ry = −(sin ' sin ' )θ θ
θ

2 1
2 ∆  . (37)

Fig. 13. Direct Fourier Method for tomographic reconstruction.
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Or, in terms of the aperture size ∆θ and a central angle
φ the indices can be rewritten as:

Index
N

Rx =
+ − −[ ]sin( ) sin( )φ θ φ θ

θ

∆ ∆

∆
2 2
2

(38)

Index
N

Ry =
+ − −[ ]cos( ) cos( )φ θ φ θ

θ

∆ ∆

∆
2 2
2

 . (39)

For any fixed aperture and set of receivers, the sum of
the squares of the indices in the x- and y-directions is related
by a constant. Thus, there is a tradeoff between improving
resolution in the x- and y-directions, as expected

         Index Index N
Rx y

2 2
2

2 2 2+ = ( ) −[ ]∆ ∆θ θcos( )  . (40)

This resolution index is useful for understanding the
limitations imposed by the system.  A second  approach to
resolution analysis will use this traditional definition to
analyse the complete  imagine system.

The minimum distance between two resolvable points
is widely accepted as the definition of resolution. However,
several interpretations of resolvable exist.  In one definition,
two points are resolvable if their first zero crossings are
separate.  Alternatively, two points can be said to be resolvable
if their  3dB contours are separate. There are many problems
associated with using such a definition for resolution.

CONCLUSIONS

The ionosphere imaging system analysed consists of
three stages. The first, is the physical data acquisition system
where the differential Doppler method is used to measure
the phase path lengths and to calculate the total electron
content. The last is the tomographic reconstruction algorithm

that is a special case of the more general x-ray tomography
Filtered Backprojection  Algorithm. The second stage
provides the link between the others taking the ionospheric
data through the reindexing process. Although this idea seems
straightforward at first glance,  there are many subtleties that
present difficulties in the imaging process. This entire imaging
system built on the foundations of x-ray tomography and the
idea of backprojection form the base to develop an algorithm
to reconstruct ionospheric images.  The resolution of this
system is analysed. A resolution index  for tomographic
imaging systems give a quantitative measure of the effect of
the controllable parameters, namely, the number of receivers
and the region covered by them. This approach provides an
upper limit to the resolving capability of the system.
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