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RESUMEN

A partir de unanuevarepresentacion de lasraices delaecuacion de Rayleigh paratodos|os val ores de larel acion de Poisson
v, se deriva una nueva expresion analitica para la raiz doble. Esta relaciona de una manera simple a los angulos especiales de
Brewster, que aparecen para ondas longitudinales o transversales incidentes en una superficie libre. Al mismo tiempo las
peculiaridades de | os coeficientes de reflexion R.s ¥ Re son investigadas.

PALABRAS CLAVE: ecuacién de Rayleigh, ondas superficiales, reflexion de ondas internas, relaciones criticas de Poisson.

ABSTRACT

A new representation of all roots of Rayleigh’s equation for all values of Poisson’s ratio v is proposed. A new analytical
expression for the double root is derived. It is found to be simply related to special Brewster angles, which occur for incident
longitudinal or transversal waves at astress-free surface. Some peculiarities of the reflection coefficients R, and Ry are discussed.

KEY WORDS: Rayleigh’'s equation, surface waves, body wave reflection, critical Poisson ratios.

INTRODUCTION

Rayleigh’s equation was discovered in the late 19"
century (Rayleigh, 1885). Yet it till attractsattentionin recent
publications (e. g. Rahman and Barber, 1995; Nkemzi, 1997;
Malischewsky, 2000). Whilethe simple numerical availability
of all kinds of roots of Rayleigh’s equation is widely
recognised, it may beinteresting to look at the problem from
a deeper point of view, in order to obtain some insight into
the behaviour of elastic materials. The existence of critical
dimensionless parameters will be shown to have a deeper
and subtle cause, which has not been adequately understood
until now. Asaseismologist | am thoroughly convinced that
we will not fully understand the Earth as awhole unless we
can gain amore compl ete understanding of the complicated
phenomena of elastic wave propagation on asmall scale.

The formalism in Rahman and Barber (1995) has the
disadvantage that there is no compact representation for the
whole range of Poisson’sratio v. Nkemzi (1997) attempted
to overcomethisdrawback by using methodsfrom the theory
of complex functions. Unfortunately, Nkemzi’s complicated
final result is incorrect. In pointing out this situation,
Malischewsky (2000) presented perhaps the simplest
formulasfor obtaining the roots of the cubic equation which
can be derived from Rayleigh’s equation by rationalization.
These formulas are valid over the entire range of possible
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Poisson’s ratios (-1 < v < 0.5). As in Rahman and Barber
(1995), negative values of v were included as they can
actually occur insomematerias(see e.g. Lakes, 1987). With
these convenient results at hand we may discuss once more
the different solutions of the Rayleigh equation in order to
derive some new analytical relations concerning the
remarkabl e point where complex solutions cease to exist. In
thisway, we shall be ableto demonstrate once again the close
connections between surface and body waves.

SOME SPECIAL SOLUTIONS OF RAYLEIGH’S
EQUATION

The well-known cubic equation that follows from
Rayleigh's equation by rationalisation is

x®—8x? +8x(3-2y) -16(1 -y) =0 withx =c*/
«y

and

2

The phase velocity of Rayleigh wavesis denoted by c,
and a, 3 are the velocities of dilatational (P) and shear (S)
waves, respectively. For convenience we briefly summarise
the results by Malischewsky (2000). By introducing the
auxiliary functions
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hy(y) = 3,/33-186y +321)2 —192 ?,

f(x,y) =h,(y) =17 +45y +h (), hy( Y =17 —45 y+h( ¥,
h,(y) = -y +1/6,

©)

we may write the three roots of (1) as

() = 3 4-3hs(v) +sionlu (] 3 sgrfns ()] (D], (@

X.(y) = :—13[8+(1J_ri\ﬁ§)%sw +(‘1iiw‘§)

signfn,(v)] 5§ sonfu(v)] ()] ©

We assume that the cubic roots are located in the first
and fourth quadrants, depending on the sign of theimaginary
part under the root. This choiceis carried out automatically
by software suchasMATHEMATICA or FORTRAN, so that
no special difficultiesarise. Eq (4) yieldsthe Rayleigh wave,
while the two complex roots are obtained from (5) in the
range v, < v< 0.5, where v,=0.26308 ... isacritical Poisson
ratio, which wasfirst obtained analytically by Malischewsky
(2000) as

=10 5532 13/aNEN = 57
VO_ﬂg' 55%m+\/4N@N—97+57 L (9

The corresponding value of yisy, = 0.3215..., obtained
by Rahman and Barber (1995) in a more complicated
notation. It isfound from

O 0
=1 _ 455 __ —
Yo =197 5,07 T +3IN, %Nl 77293+7296V114 (7

N

Before proceeding to utilise these useful expressions,
it may be appropriate to make some general remarks on the
solutions of Rayleigh's equation. It is a well-known fact,
which hasbeen mathematically proved (seee. g. Narasimhan,
1993), that Rayleigh's equation has a solution x<1 for all
admissible values of Poisson’s ratio. The ratio c/f is a
continuously increasing function of Poisson’s ratio, which
variesfrom 0.6889... forv=-1t00.9553... forv=0.5.The
latter value deservesto be examined more closely. Thevaue
v = 0.5 can mean either that the material isaliquid (f = 0),
or that a isinfinite, as for an incompressible material such
as rubber. Thefirst case may be excluded here, as Rayleigh
waves cannot propagate in liquids. Ewing et al. (1957)
proposed asimplified Rayleigh equation for incompressible
materials

fne(X) = x> —8x% +24x -16 =0, (8)

whose analytical solution follows easily from our genera
solution (4):

Xinc = %%4 + % -17 +3\/§ —%17 +3\§ B: 0.9126... . (9)
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The complex roots for v>v, were described by Hayes
and Rivlin (1962) as extraneous roots which arise because
of therationalisation of the original Rayleigh equation. They
concluded that the complex roots lead to inadmissible
displacement fields at infinity. Thusthey attempted to extend
the original result by Rayleigh (1885), where the same
conclusion was reached for incompressible materials only.
On the other hand, these additional roots do correspond to
solutions of the original partial differential equation, and we
should not jump to conclusions.

Undoubtedly these complex roots must be closely
connected with the leaking modes of waveguides, afamiliar
phenomenon in seismology. These modes may beunphysical,
but following Kamel and Felsen (1981) they may beregarded
as accounting more efficiently for the continuous spectrum
contribution of the norma mode within a bounded part of
the waveguide. This remark concerns the cross-sectional
coordinate of the waveguide. On the other hand, complex x-
values lead to complex wavenumbers concerning the axial
coordinate of the waveguide, so that these solutions cannot
be extended in an axial direction from -oo to +o0. Yet they
could easily exist in theform of so-called evanescent waves,
in the neighbourhood of lateral heterogeneities. Such a
situation is far from exceptional in waveguide problems. In
the context of selsmology, neighbourhood can mean hundreds
of kilometres.

Let us define
Co/B=\ Rdx{y(v}] (10)

and let uslook more closely at these peculiar solutions with
a“phasevelocity” c.. In doing thiswe keep in mind that there
is no standard definition for the phase velocity of leaking
modes. Theratio ¢/Bisacontinuously and weakly decreasing
function of Poisson’s ratio which variesfrom 1.89087... for
v =V, to 1.8825... for v=0.5. Hence c. is aways greater
than B, and it is even dlightly greater than a in the range
Vo< vV < 0.3054... For vgi; =0.3054... we have c.= a. Such
unusual valuesare hardly surprising, asMalischewsky (1985)
obtained higher leaking modes of Love waves with phase
vel ocities exceeding 200% of thevaue of a inthe half-space.

Let us go one step further. If we interpret c. as the
apparent velocity of incident or outgoing P and S waves
belonging to the continuous spectrum

Ly =g, (1)

c (9

snd® =

theanglesd arewith thenormal at the surface. Then we may
confirm (Figure 1) that such an interpretation is possible for
Swavesover the entirerange v,< v< 0.5, but for Pwavesit
obtains only in the range v,< v < v Thus the following
remarks may be pertinent. When surface waves encounter a
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Fig. 1. Incidence angles versus v of P (heavy) and S (light) waves corresponding to the apparent velocity derived from complex
Rayleigh roots

lateral inhomogeneity they may generate an outgoing
radiation field. On the other hand, the radiating modes (or
body waves) form a standing wave field in the transverse
direction. The conception of radiating modes originatesfrom
the physics of optical waveguides though it has been
successfully adopted in seismology (seee. g. Malischewsky,
1987, and Maupin, 1996). Thefact that modeswith astanding
wave pattern can produce an outgoing wavefieldissurprising
but well established (Marcuse, 1974). The explanation is as
follows. If radiation is excited by an imperfection in the
waveguideit excitesinfinitely many radiation modes, which
are superposed in such away that the incoming parts of the
standing wave cancel by constructive interference.

Thusit cannot be excluded that the“forbidden” complex
solutions of Rayleigh’s equation may be helpful inexplaining
the fine structure of seismograms near lateral disturbances.
However, it istoo early to draw any final conclusions.

In the following we concentrate on the range v< v,and
especialy on the solution of (1) at the critical points v,and
¥%. It isaknown fact that for v< v,the solutions (5) become
real and are related to certain critical reflections of
longitudinal or transverse waves at a stress-free surface. We
shall returnto thissoon, but first let usrewrite Eq (5) for real
roots as follows:

%,2(v) = 3 (8 +2{Rd3 ()] * V3 0m{3a( 1]
fory,<y<0.75 . (12)

According to (4) the root X, (the Rayleigh-wave root)
has no peculiarities for v,or y, since

Xo =4 (2-0) =42 -7), with ¥ =\/‘1?/‘;°_‘14 and i = (12, -2,
(13)

but the root x, that follows from (5) for v= v,
ch:%(2+%\7):%(2+%y7), (14)

is more interesting because of its significance as a double
root of the cubic equation (1). Rahman and Barber (1995)
provide solutionsfor (13) and (14) that are more complicated,
asthey contain cubic roots which may now be avoided.

THE CONNECTION WITH BODY WAVE
REFLECTIONS

At a stress-free surface let us denote the angles of
incidence with the vertical by 9, and 35 for longitudinal and
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transverse waves, respectively. Normally an incident wave
will produce both kinds of elastic waves, so that it becomes
necessary to consider the four reflection coefficients Rop (95),
Ros(39), Res(99), Re(95). We adopt here the seismological
notation for longitudinal and transverse waves as P- and S
waves, respectively. By setting Rep (95)=0 or R (99)=0 we
obtain the Brewster angles 6, and 6, defined asthose angles
at which an incident P-wave produces an S-wave only and
viceversa.

It is an interesting though well-known fact (see e. g.
Ewing et al., (1957), that both the equations R (J5)=0and
Rs(J9) can be transformed into the cubic equation (1) by
defining

1
2
ysin® 6y

1

X= for P-wavesand x = —
sin

for S-waves. (15)

This connection between body wave reflection
coefficients and Rayleigh waves becomes more transparent
when werealisethat thelatter may be considered asasystem
of simultaneoudly incident P and S waves at a free surface
with complex angles of incidence.

Now the root x can be understood as the ratio ¢?/ 32,

where ¢, is the apparent velocity at the surface of P- and S
waves, respectively. Thismay be easily checked by inspecting
the well-known expressions for Rep and Ry (see e. g.
Achenbach, 1973). We present here for the first time a 3D
graph of these coefficientsin the range -1<v<0.5 (Figure 2).
Their intersection curves 6-(v) and 64 V) withtheplanez=0
(blue) were first published by Arenberg (1948).

Usually there are two pairs of values 6, G-, and 64,
B, for each value of v. For v = 0.25weabtain thefollowing
simple expressions:

SiNBp; =+/3/2 - Bpy =60°SiNBGp, =3/+/6+2/3 — B, =77.21°

SiNBg =1/2 - By =30°Sin B, =1/~/2+2//3 - B, =34.26°
(16)

However, for v=y, there is only one Brewster angle,
namely G- = 68.86° for P-waves and 6y = 31.93° for S
waves. These values may be simply related to v, or y, by
way of Egs (14) and (15).

. _ 3(vo -1 _ 3

sinBeo ‘J @vo-D@+0) \2ya+p @D
o _ 312 _ |32
SlnGSO—\s4+D—\“;4+)~/. (18)

158

Note, that the curve 6.,(V) has a maximum of 90° at v
- 0. However, thisvaueisto beexcluded, becauseit requires
a separate consideration in connection with the so-called
Goodier-Bishop waves (see e. g. Ewing et al., 1957). These
strange inhomogeneous waves feature a linear amplitude-
depth dependence. They are necessary to meet the boundary
conditions at the free surface of a half-space at grazing
incidence (6=90°) for Por Swaves. Goodier-Bishop waves
areinadmissibleat infinity, but Malischewsky (1971) showed
that they can exist within bounded layers of alayered half-
space.

It should be mentioned that Brewster anglesare always
of great significance in seismology. Thus these results are
applicable to the problem of change of polarity of seismic
signalssuchaspP, PP, sS and SSafter reflection at the Earth’s
surface, and they may be used for theinvestigation of crustal
structure with such phases (see e. g. Papazachos, 1964).

PECULIARITIES OF Res AND Rse

After obtaining Brewster’'sangles 6 and 65 by equating
Rer and Rss to zero, it may be interesting to investigate the
corresponding associated coefficients Res and Rs for any
peculiarities they may offer. Such peculiaritiesindeed exist

asFigure 3 shows. Thus Reshasamaximum at 9™ =40.37°

and v, = 0.1481 and Re has a saddle point at 9$)=27.84°

and v; = 0.0043. These features are presented here for the
first time. Clearly they are not connected with the special
points (17) and (18).

Notethat, because of itsvicinity to zero, the saddle point
at vs would be hard to discover unless negative Poisson’s
ratios are considered. Finally, let us mention that there are
intersection points between all combinations of thereflection
coefficients. The peculiar features of these points will be
discussed in aforthcoming paper.
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Reflection Coefficients for P and S Waves at the Free Surface
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Fig. 2. The reflection coefficients R (red) and Ry (yellow) as functions of the Poisson ratio and the angle of incidence
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Fig. 3. Contour plots for the reflection coefficients Res and Re as functions of the Poisson ratio and the angle of incidence. For better
visibility of the saddle point the presentation for Re is zoomed.
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