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RESUMEN
A partir de una nueva representación de las raíces de la ecuación de Rayleigh para todos los valores de la relación de Poisson

ν, se deriva una nueva expresión analítica para la raíz doble. Esta relaciona de una manera simple a los ángulos especiales de
Brewster, que aparecen para ondas longitudinales o transversales incidentes en una superficie libre. Al mismo tiempo las
peculiaridades de los coeficientes de reflexión RPS y RSP son investigadas.

PALABRAS CLAVE: ecuación de Rayleigh, ondas superficiales, reflexión de ondas internas, relaciones  críticas de Poisson.

ABSTRACT
A new representation of all roots of Rayleigh’s equation for all values of Poisson’s  ratio ν is proposed. A new analytical

expression for the double root is derived. It is found to be simply related to special Brewster angles, which occur for incident
longitudinal or transversal waves at a stress-free surface. Some peculiarities of the reflection coefficients RPS and RSP are discussed.

KEY WORDS: Rayleigh’s equation, surface waves, body wave reflection, critical Poisson ratios.

INTRODUCTION

Rayleigh’s equation was discovered in the late 19th

century (Rayleigh, 1885). Yet it still attracts attention in recent
publications (e. g. Rahman and Barber, 1995; Nkemzi, 1997;
Malischewsky, 2000). While the simple numerical availability
of all kinds of roots of Rayleigh’s equation is widely
recognised, it may be interesting to look at the problem from
a deeper point of view, in order to obtain some insight into
the behaviour of elastic materials. The existence of critical
dimensionless parameters will be shown to have a deeper
and subtle cause, which has not been adequately understood
until now. As a seismologist I am thoroughly convinced that
we will not fully understand the Earth as a whole unless we
can gain a more complete understanding of the complicated
phenomena of elastic wave propagation on a small scale.

The formalism in Rahman and Barber (1995) has the
disadvantage that there is no compact representation for the
whole range of Poisson’s ratio ν. Nkemzi (1997) attempted
to overcome this drawback by using methods from the theory
of complex functions. Unfortunately, Nkemzi’s complicated
final result is incorrect. In pointing out this situation,
Malischewsky (2000) presented perhaps the simplest
formulas for obtaining the roots of the cubic equation which
can be derived from Rayleigh’s equation by rationalization.
These formulas are valid over the entire range of possible

Poisson’s ratios (-1 ≤ ν ≤ 0.5). As in Rahman and Barber
(1995), negative values of ν were included as they can
actually occur in some materials (see  e.g. Lakes, 1987). With
these convenient results at hand we may discuss once more
the different solutions of the Rayleigh equation in order to
derive some new analytical relations concerning the
remarkable point where complex solutions cease to exist. In
this way, we shall be able to demonstrate once again the close
connections between surface and body waves.

SOME SPECIAL SOLUTIONS OF RAYLEIGH’S
EQUATION

The well-known cubic equation that follows from
Rayleigh’s equation by rationalisation is

x x x x c3 2 2 28 8 3 2 16 1 0− + − − − = =( ) ( ) /γ γ β  with 
 (1)

and
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The phase velocity of Rayleigh waves is denoted by c,
and α, β are the velocities of dilatational (P) and shear (S)
waves, respectively. For convenience we briefly summarise
the results by Malischewsky (2000). By introducing the
auxiliary functions
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we may write the three roots of  (1) as
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We assume that the cubic roots are located in the first
and fourth quadrants, depending on the sign of the imaginary
part under the root. This choice is carried out automatically
by software such as MATHEMATICA or FORTRAN, so that
no special difficulties arise. Eq (4) yields the Rayleigh wave,
while the two complex roots are obtained from (5) in the
range ν0 < ν ≤ 0.5, where ν0=0.26308 … is a critical Poisson
ratio, which was first obtained analytically by Malischewsky
(2000) as

          ν0
3 31
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The corresponding value of γ is γ0 = 0.3215..., obtained
by Rahman and Barber (1995) in a more complicated
notation. It is found from
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Before proceeding to utilise these useful expressions,
it may be appropriate to make some general remarks on the
solutions of Rayleigh’s equation. It is a well-known fact,
which has been mathematically proved (see e. g. Narasimhan,
1993), that Rayleigh’s equation has a solution x<1 for all
admissible values of Poisson’s ratio. The ratio c/β is a
continuously increasing function of Poisson’s ratio, which
varies from 0.6889… for ν = -1 to 0.9553… for ν = 0.5 . The
latter value deserves to be examined more closely. The value
ν = 0.5 can mean either that the material is a liquid (β = 0),
or that α is infinite, as for an incompressible material such
as rubber. The first case may be excluded here, as Rayleigh
waves cannot propagate in liquids. Ewing et al. (1957)
proposed a simplified Rayleigh equation for incompressible
materials

      f x x x xinc ( ) = − + − =3 28 24 16 0, (8)

whose analytical solution follows easily from our general
solution (4):

    xinc = + − + − +
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3 4 17 3 33 17 3 33 0 91263 3 . ... . (9)

The complex roots for ν>ν0 were described by  Hayes
and Rivlin (1962) as extraneous roots which arise because
of the rationalisation of the original Rayleigh equation. They
concluded that the complex roots lead to inadmissible
displacement fields at infinity. Thus they attempted to extend
the original result by Rayleigh (1885), where the same
conclusion was reached for incompressible materials only.
On the other hand, these additional roots do correspond to
solutions of the original partial differential equation, and we
should not jump to conclusions.

Undoubtedly these complex roots must be closely
connected with the leaking modes of waveguides, a familiar
phenomenon in seismology. These modes may be unphysical,
but following Kamel and Felsen (1981) they may be regarded
as accounting more efficiently for the continuous spectrum
contribution of the normal mode within a bounded part of
the waveguide. This remark concerns the cross-sectional
coordinate of the waveguide. On the other hand, complex x-
values lead to complex wavenumbers concerning the axial
coordinate of the waveguide, so that these solutions cannot
be extended in an axial direction from -∞ to +∞. Yet they
could easily exist in the form of so-called evanescent waves,
in the neighbourhood of lateral heterogeneities. Such a
situation is far from exceptional in waveguide problems. In
the context of seismology, neighbourhood can mean hundreds
of kilometres.

Let us define

c xc c/ Re ( )β γ ν= { }[ ] (10)

and let us look more closely at these peculiar solutions with
a “phase velocity”cc. In doing this we keep in mind that there
is no standard definition for the phase velocity of leaking
modes. The ratio cc/β is a continuously and weakly decreasing
function of Poisson’s ratio which varies from 1.89087… for
ν = ν0 to 1.8825… for ν = 0.5. Hence cc is always greater
than β, and it is even slightly greater than α in the range
ν0< ν < 0.3054... For νcrit =0.3054... we have cc = α. Such
unusual values are hardly surprising, as Malischewsky (1985)
obtained higher leaking modes of Love waves with phase
velocities exceeding 200% of the value of α in the half-space.

Let us go one step further. If we interpret cc as the
apparent velocity of incident or outgoing P and S waves
belonging to the continuous spectrum

     sin , sin ,( ) ( )ϑ β
γ

ϑ β
P
c

c
S
c

cc c= = (11)

the angles ϑ  are with the normal at the surface. Then we may
confirm (Figure 1) that such an interpretation is possible for
S waves over the entire range ν0 < ν ≤ 0.5, but for P waves it
obtains only in the range ν0 < ν < νcrit. Thus the following
remarks may be pertinent. When surface waves encounter a
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lateral inhomogeneity they may generate an outgoing
radiation field.  On the other hand, the radiating modes (or
body waves) form a standing wave field in the transverse
direction. The conception of radiating modes originates from
the physics of optical waveguides though it has been
successfully adopted in seismology (see e. g. Malischewsky,
1987, and Maupin, 1996). The fact that modes with a standing
wave pattern can produce an outgoing wave field is surprising
but well established (Marcuse, 1974). The explanation is as
follows. If radiation is excited by an imperfection in the
waveguide it excites infinitely many radiation modes, which
are superposed in such a way that the incoming parts of the
standing wave cancel by constructive interference.

Thus it cannot be excluded that the “forbidden” complex
solutions of Rayleigh’s equation may be helpful in explaining
the fine structure of seismograms near lateral disturbances.
However, it is too early to draw any final conclusions.

In the following we concentrate on the range ν < ν0 and
especially on the solution of (1) at the critical points ν0 and
γ0. It is a known fact that for ν ≤ ν0 the solutions (5) become
real and are related to certain critical reflections of
longitudinal or transverse waves at a stress-free surface. We
shall return to this soon, but first let us rewrite Eq (5) for real
roots as follows:

  
x h h1 2 3

3
3

31
3 8 2 3, ( ) Re ( ) Im ( )γ γ γ= + [ ] ⋅ [ ]{ }( )m

  for γ γ0 0 75< ≤ .   . (12)

According to (4) the root x0 (the Rayleigh-wave root)
has no peculiarities for ν0 or γ0, since

(13)

but the root xc0 that follows from (5) for ν = ν0,

      xc0
4
3 2 1

2
4
3 2 1

2= +( ) = +( )˜ ˜ν γ , (14)

is more interesting because of its significance as a double
root of the cubic equation (1). Rahman and Barber (1995)
provide solutions for (13) and (14) that are more complicated,
as they contain cubic roots which may now be avoided.

THE CONNECTION WITH BODY WAVE
REFLECTIONS

At a stress-free surface let us denote the angles of
incidence with the vertical by ϑP and ϑ S for longitudinal and

Fig. 1. Incidence angles versus ν of P (heavy) and S (light) waves corresponding to the apparent velocity derived from complex
Rayleigh roots
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transverse waves, respectively. Normally an incident wave
will produce both kinds of elastic waves, so that it becomes
necessary to consider the four reflection coefficients RPP (ϑP),
RPS (ϑ S), RSS (ϑ S), RSP(ϑ S). We adopt here the seismological
notation for longitudinal and transverse waves as P- and S-
waves, respectively. By setting RPP (ϑP)=0 or RSS (ϑ S)=0 we
obtain the Brewster angles θP and θS, defined as those angles
at which an incident P-wave produces an S-wave only and
vice versa.

It is an interesting though well-known fact (see e. g.
Ewing et al., (1957), that both the equations RPP (ϑP)=0 and
RSS (ϑ S) can be transformed into the cubic equation (1) by
defining

x x
P S

= =1 1
2 2γ θ θsin sin

 for P - waves and  for S - waves . (15)

This connection between body wave reflection
coefficients and Rayleigh waves becomes more transparent
when we realise that the latter may be considered as a system
of simultaneously incident P and S waves at a free surface
with complex angles of incidence.

Now the root x can be understood as the ratio ca
2 2/ β ,

where ca is the apparent velocity at the surface of P- and S-
waves, respectively. This may be easily checked by inspecting
the well-known expressions for RPP and RSS (see e. g.
Achenbach, 1973).  We present here for the first time a 3D
graph of these coefficients in the range -1≤ν≤0.5 (Figure 2).
Their intersection curves θP(ν) and θS(ν) with the plane z = 0
(blue) were first published by Arenberg (1948).

Usually there are two pairs of values θP1, θP2 and θS1,
θS2, for each value of ν. For ν  =  0.25 we obtain the following
simple expressions:

sin sin / / ./ ; .θ θ θ θS S S S1 1 2 21 2 3 1 340 2 2 3 26= → = ° = → = °+
(16)

However, for ν=ν0 there is only one Brewster angle,
namely θP0 = 68.86° for P-waves and θS0 = 31.93° for S-
waves. These values may be simply related to ν0 or γ0 by
way of Eqs (14) and (15).
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3 1
2 1 4
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−
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ν γS0

3 2
4

3 2
4
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+

=
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Note, that the curve θP2(ν) has a maximum of 90° at ν
→ 0. However, this value is to be excluded, because it requires
a separate consideration in connection with the so-called
Goodier-Bishop waves (see e. g. Ewing et al., 1957). These
strange inhomogeneous waves feature a linear amplitude-
depth dependence. They are necessary to meet the boundary
conditions at the free surface of a half-space at grazing
incidence (θ = 90°) for  P or S waves. Goodier-Bishop waves
are inadmissible at infinity, but Malischewsky (1971) showed
that they can exist within bounded layers of a layered half-
space.

It should be mentioned that Brewster angles are always
of great significance in seismology. Thus these results are
applicable to the problem of change of polarity of seismic
signals such as pP, PP, sS, and SS after reflection at the Earth´s
surface, and they may be used for the investigation of crustal
structure with such phases (see e. g. Papazachos, 1964).

PECULIARITIES OF RPS AND RSP

After obtaining Brewster’s angles θP and θS by equating
RPP and RSS to zero, it may be interesting to investigate the
corresponding associated coefficients RPS and RSP for any
peculiarities they may offer.  Such peculiarities indeed exist

as Figure 3 shows. Thus RPS has a maximum at ϑ P
m( ) =40.37°

and νm = 0.1481 and RSP has a saddle point at ϑ S
s( )=27.84°

and νs = 0.0043. These features are presented here for the
first time.  Clearly they are not connected with the special
points (17) and (18).

Note that, because of its vicinity to zero, the saddle point
at νs would be hard to discover unless negative Poisson’s
ratios are considered. Finally, let us mention that there are
intersection points between all combinations of the reflection
coefficients. The peculiar features of these points will be
discussed in a forthcoming paper.
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Fig. 2. The reflection coefficients RPP (red) and RSS (yellow) as functions of the Poisson ratio and the angle of incidence

Fig. 3. Contour plots for the reflection coefficients RPS and RSP as functions of the Poisson ratio and the angle of incidence. For better
visibility of the saddle point the presentation for RSP is zoomed.
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