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RESUMEN
Se propone un método unidimensional simplificado para estimar la altura del frente de onda de tsunamis transoceánicos

mediante una función de direccionalidad de flujo de energía aplicada a un modelo unidimensional en diferencias finitas basado en
las ecuaciones de aguas someras. La simulación numérica del tsunami de Shikotan del 4 de octubre de 1994  y el análisis de las
observaciones, obtenidas en mar abierto a ~6300 km de su origen, así como el análisis de las ecuaciones lineales de aguas someras
y de las ecuaciones lineales de Boussinesq, muestran que la dispersión por frecuencia prescrita por las ecuaciones de Boussinesq
es un mecanismo necesario y suficiente para simular la propagación de tsunamis transoceánicos grandes y medianos. La solución
analítica de las ecuaciones no dispersivas de aguas someras sobrestima significantemente la altura del frente de onda del tsunami
en comparación con la solución analítica obtenida de las ecuaciones dispersivas de Boussinesq. Los resultados confirman que el
método explícito de diferencias finitas centrales aplicado a las ecuaciones de aguas someras es apropiado para simular la propagación
transoceánica de tsunamis. Esto se debe a que la dispersión intrínseca del método numérico es similar a la dispersión por frecuencia
prescrita por Boussinesq (Imamura et al.,1990; Liu et al., 1995).

PALABRAS CLAVE: Método unidimensional, dispersión por frecuencia, tsunami en mar abierto, tsunami de Shikotan de 1994.

ABSTRACT
A simplified one-dimensional method is proposed to estimate the height of the leading wave of transoceanic tsunamis by

means of a directivity function applied to the one-dimensional finite difference model based on the shallow water equations. The
numerical modeling of the October 4, 1994 Shikotan tsunami, and the analysis of its deep-ocean signature observed at a distance
of ~6300 km from the source, as well as the analysis of the linear shallow water equations (non-dispersive theory) and of the
Boussinesq equations (dispersive theory), shows that the frequency dispersion mechanism, as prescribed by Boussinesq equations,
is a necessary and sufficient condition to simulate the transoceanic propagation of tsunamis. The analytical results from non-
dispersive equations, as compared with those obtained using dispersive theory, overestimate significantly the height of the leading
wave of large and medium size tsunamis. The results confirm that the linear shallow water equations solved by an explicit central
finite difference method are appropriate to simulate the tsunami propagation from the source area to the far field. This is due to the
fact that the inherent frequency dispersion in the numerical method mimics the frequency dispersion prescribed by Boussinesq
equations (Imamura et al., 1990; Liu et al., (1995).

KEY WORDS: One-dimensional method, frequency dispersion, deep-ocean tsunami signature, 1994 Shikotan tsunami.

INTRODUCTION

We reexamine the equations that govern transoceanic
tsunami propagation in order to evaluate flooding risk for
coastal regions after tsunami warning. Since 1960, only the
1960 Chile and the 1964 Alaska tsunamis have caused
damage across the Pacific Ocean basin. However, between
1991 and 1997, 13 warnings were issued by the Pacific
Tsunami Warning Center (Blackford, 1999). The warning
from the October 4, 1994 Shikotan tsunami caused panic
along the Pacific coasts of North, Central and South America,
mainly because of the lack of a reliable criterion to evaluate
the risk of potential flooding. A reliable criterion for
evaluating tsunami warnings might consist in a database of

numerical simulations of transoceanic tsunami propagations
from generating regions. However, before beginning to create
such a database, it is worthwhile to reexamine the governing
equations of tsunami propagation as well as the methods of
solution.

The appropriate governing equations have been a
subject of debate over the last three decades (Tuck, 1979).
This is due to differences in the predicted height of the leading
wave when using linear shallow water equations, or linear
Boussinesq equations. For long propagation distances (far
from the source area), the frequency dispersion from
Boussinesq equations reduces the height of the leading wave
as compared with the height obtained by using the shallow
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water equations. The difference may be of a few centimeters
in the deep ocean, but it could be significant in the estimation
of tsunami run-up. For near field-tsunamis, in a sea deeper
than 50 m, the linear long-wave theory is said to be adequate
for practical purposes; and in a sea shallower than 50 m, the
shallow-water theory including bottom friction is normally
used (Shuto et al., 1991). In some cases, the single estimation
of the leading-wave height could be misleading in terms of
the risk of maximum potential flooding since the second,
third or fourth waves can be higher than the leading one, as
in the 1964 Hilo tsunami (Figure 12), where the second wave
was higher than the leading wave.

Houston (1978) and Houston et al., (1984) concluded
that linear long-wave equations govern the generation and
propagation over the deep ocean and the continental shelf of
the leading tsunami wave. They suggested that for very large
tsunamis, such as the 1964 Alaska tsunami, frequency
dispersion is negligible during propagation except when
tsunamis exhibit a bore-like shape in their final run-up phase.
Hammack and Segur (1978) agreed that for large tsunamis,
nonlinearity or frequency dispersion have no significant effect
on the leading wave. Kowalik (1993) proposed a Fourth-
Order Leapfrog scheme to smoothen the effect of dispersion
introduced by numerical solutions of the shallow water
equations. On the other hand, Heinrich et al., (1998) found
that the effect of dispersion can be significant. They solved
the Boussinesq equations using a finite difference method.
Imamura et al. (1990) and Liu et al. (1995) also considered
this effect as important. By choosing an appropriate grid size
and a time step in the finite difference method, they were
able to mimic the frequency dispersion prescribed by
Boussinesq. Yoon and Liu (1993), proposed a similar method
using finite elements.

The mechanism of frequency dispersion is not clearly
established from tsunami observations at coastal tide gauges,
due to the strong influence of local bathymetry and
topography on the wave field. Thus the establishment and
validation of the appropriate governing equations for
transoceanic tsunami propagation is still debated. In this
paper, the deep-ocean signature of the October 4, 1994
Shikotan tsunami is analyzed to assess the effect of frequency
dispersion. For the governing equation selected here, we
propose a one-dimensional model for tsunami propagation
that can be used to evaluate the flood risk within minutes
after a tsunami warning, prodived that the local response,
bathymetry and topography are well known for each location
in advance.

DEEP-OCEAN SIGNATURE OF THE OCTOBER 4,
1994 SHIKOTAN TSUNAMI

The Pacific Marine Environmental Laboratory (PMEL/
NOAA) has developed a long-term monitoring network of

bottom pressure recorder (BPR) stations in the Pacific Ocean
with sea-level sensitivity of 1 mm (González et al., 1987;
Eble and González, 1991; Eble et al., 1989). We analyze the
data from one BPR, which contains a record of the deep-
ocean signature of the October 4, 1994 Shikotan tsunami at
a sampling interval of 15 s. The BPR is located about 450
km offshore in the northeast Pacific (45.95°N, 129.99°W),
at a depth of 1550 m and approximately at a distance of 6300
km from the tsunami source (Figure 1).

A comprehensive analysis requires the estimation of
the tsunami path (S) from the source to the BPR location, as
well as the synthetic tsunami data for comparison. A
preliminary numerical simulation of the Shikotan tsunami
was performed using the shallow water equations (Pedlosky,
1979):

∂η
∂t

+ ∇ ⋅ =M 0

(1)

∂
∂ ηM M
t

gh+ ∇ + × =2 0Ω

where, t is time,η is the vertical displacement of the water
surface above the normal water level, h is the ocean depth,
M is the horizontal depth–averaged volume flux vector, g is
the gravitational acceleration and Ω is the angular velocity
of the Earth.

Equations (1) were solved in spherical coordinates us-
ing the finite difference method with a staggered leap-frog
scheme (Goto et al., 1997). The grid size was set to 4 min
and the time step to 5 s. The bathymetry was taken from the
ETOPO-2 data bank (Smith and Sandwell, 1997). The rup-
ture parameters of the October 4, 1994 earthquake were taken
from Kikuchi and Kanamori (1995), considering a steep fault
(strike,dip,rake) = (49°, 75°, 125°), and a uniform disloca-
tion of 5.6 m over the fault area of 120x60 km. The vertical
movement of the sea floor was computed using the disloca-
tion model of Mansinha and Smylie (1971). As an initial
condition, the sea-level change due to the rupture was taken
to be the same as the instantaneous sea-floor uplift computed
by the dislocation model.

The path S was obtained from the travel-time chart (Fig-
ure 1), based on the identification of the tsunami wave front
at every time step in the numerical model. Once the travel
time matrix is obtained, the path can be computed as orthogo-
nal to the wave fronts. The bathymetric profile along the path
was obtained by linear interpolation from the ETOPO-2 data
bank. Synthetic time series of vertical displacements of the
water surface at the location of the BPR were obtained from
the numerical simulation of the tsunami. Figure 2 shows the
excellent agreement between the observed and synthetic tsu-
namis. In the synthetic tsunami, the two oscillations that fol-
low the main peak are produced clearly by numerical disper-
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sion. The later high-frequency waves are produced by inter-
action of the wave front with the bathymetry. The two subse-
quent oscillations are barely seen in the BPR data due to
background noise.

A BPR spectrogram, where energy contours are mapped
in time-frequency space, was used to estimate the evolution
of tsunami energy as a function of time and frequency (Fig-
ure 3a). The spectrogram, z, was computed using the com-
plex demodulation concept (Ortiz, 2000):

z f
f
a t

f

a
e e dN N t f a i f t aN N=



 = − −

−∞

∞
− −∫, ( ) ( ) ( / ) ( ) /

2

2 22 2

π
η τ ττ π τ

(2)

In equation (2), f = ω/2π is the cyclic frequency, ω is
the angular frequency and fN is the Nyquist frequency. The
parameter, a, controls the width of the bandpass filters used
in the demodulation.

Frequency dispersion in the BPR spectrogram is indi-
cated by the curvature of the energy ridge. A similar disper-
sive pattern can be observed in the spectrogram of the syn-
thetic tsunami (Figure 3b). The energy ridge in the BPR spec-
trogram reproduces well the arrival time as a function of fre-
quency, ta(f), as prescribed by the linear Boussinesq equa-
tions (Liu et al., 1995):

∂η
∂t

+ ∇ ⋅ =M 0

(3)

∂
∂ η ∂

∂
M M M
t

gh h
t h+ ∇ + × = ∇ ∇ ⋅ ( )





2 3
3

Ω  .

The arrival time for each frequency was computed from
the equation

 t f dS
C f Sa

g
S

( ) ( , ),= ∫ (4)

where Cg(f,S) is the group velocity derived from the one-
dimensional form of (3) along the path from the tsunami
source (43.48°N, 147.40°E) to the location of the BPR:

       C f S
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where k is the wave number.

The trace of the arrival time ta (f) is well reproduced by
the spectrogram of the synthetic tsunami (Figure 3b). The

Fig. 1. Travel-time chart (in hours) estimated by the two-dimensional numerical simulation of the October 4, 1994 Shikotan tsunami. The
lines connecting the tsunami source with Kahuliu Bay, Wake Island and the BPR location are the paths S of minimum travel time to each

location.
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Fig. 2. The October 4, 1994 Shikotan tsunami at the BPR location: Observed tsunami (line with circles) and synthetic tsunami (solid line)
obtained by the two-dimensional numerical simulation. The origin of the time axis is defined as the origin time of the earthquake (13:22:58.1;

 UT).

Fig. 3. a –Spectrogram of the BPR data; b –Spectrogram of the synthetic tsunami. Energy contours in both spectrograms are normalized by
the maximum value. The trace of the arrival time function ta (f) is indicated in both figures by the solid line with circles. The origin of the

time axis is defined as the origin time of the earthquake.
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Imamura number is ~0.7 along 90% of the path; thus the
numerical results mimic the frequency dispersion prescribed
by the Boussinesq equations (Imamura et al., 1990; Shuto et
al 1991; Satake et al., 1995).

In conclusion, the deep-ocean signature of the October
4, 1994 Shikotan tsunami is consistent with a frequency
dispersion as computed from the Boussinesq equations. For
modeling the transoceanic tsunami propagation, a higher
order dispersion relationship is not required. Let us now find
out whether Boussinesq dispersion is a necessary condition
for large tsunamis, or whether the non-dispersive condition

wave celerity ≈ gh  is sufficient.

FREQUENCY DISPERSION, A NECESSARY
CONDITION FOR LARGE TSUNAMIS

The simulated height of the leading wave of tsunamis,
from dispersive or non-dispersive theories, depends largely

on the ocean depth and on the tsunami initial condition, i.e.,
on the spectral distribution of its energy. Consider the two-
dimensional propagation in a plane sheet of water of uniform
depth (h=3000 m) of two tsunamis of different size. A
representative medium-size tsunami was selected as the
largest among those which occurred in Mexico, 1985
(Anderson et al., 1986), Nicaragua, 1992 (Satake et al., 1993),
Flores Island 1992 (Yeh et al., 1993), Shikotan, 1994 (Kikuchi
and Kanamori, 1995), and Jalisco, 1995 (Ortiz et al., 1998).
This tsunami is assumed as being generated by a reverse fault
of width W = 70 km, length L = 200 km, dip angle 30°, slip
magnitude 4 m, and a shallow edge at a depth of 15 km. For
the large tsunami, the fault parameters of the May 22, 1960
Chilean tsunami were assumed (Kanamori and Ciper, 1974;
L=800 km, W=200 km, dip angle 10°, slip magnitude 24 m,
shallow depth 25 km). The two-dimensional initial conditions
of large and medium size tsunamis (Figures 4a,b) were
computed from the dislocation model of Mansinha and
Smylie (1971).

Fig. 4. Two-dimensional tsunami initial condition projected along the principal axis, i.e., the axis perpendicular to the strike of the fault plane.
a –Medium size tsunami; b –Large tsunami. The tsunami initial condition was taken to be the same as the instantaneous sea-floor uplift

computed by the dislocation model of Mansinha and Smylie (1971).



212

M. Ortiz et al.

The transoceanic propagation was computed from both
dispersive and non-dispersive theories, i.e., the linear shallow
water equations (1) and the linear Boussinesq equations (3),
neglecting the Earth rotation. The solution of (1) and (3) in a
closed plane sheet of water of uniform depth, can be expressed
as a single equation in rectangular coordinates (0 ≤ x ≤ a; 0 ≤
y ≤ b), (Lamb, 1932):

η π π( , , ) cos( / )cos( )cos( ),x y t A m x a n y Cktm n

nm

= ∑∑
(6)

k m a n b2 2 2 2 2 2= +π ( / / ) ,

where k is the wavenumber; C is the wave celerity, Am,n are
the Fourier coefficients and a and b are the length and width
of the rectangular coordinate domain. The solution of (1)

was obtained by setting C C gh= =0 , whereas the solution of

(3) was obtained for the dispersion relationship

C k C k h= = −ω / /0
2 21 3 , (7)

After propagating 6000 km from the source, along an
axis perpendicular to the strike of the fault plane (to be
referred as principal axis), the height of the leading wave of
the medium or large tsunami evaluated by means of the non-
dispersive theory exceeded by ~200% or ~60% the height of
the leading wave computed from dispersive theory.
Differences are less than 20% along the diagonal and parallel
axis for both tsunamis, due to the two-dimensional
geometrical spreading acting like a damping factor
proportional to the propagation distance and to the
wavenumber. Without dispersion, the short-wave components
at the wave front, between the diagonal and parallel axis, are
attenuated by the damping factor. When dispersion is acting,
the short waves are left behind the wave front and are
attenuated by the damping factor. This mechanism minimizes
the differences in the wave height resulting from dispersive
and non-dispersive theories for diagonal and parallel
propagation. Along the principal axis, the tsunami directivity
minimizes wave spreading, and the short wave components
produce large differences in the wave front. Figures 5 (a,b)
and 6 (a,b) compare the waveform of medium and large-size
tsunamis, as computed using dispersive and non-dispersive
theories. In order to estimate the significance of the
differences in the wave height in terms of flooding, the run-
up produced for both kinds of tsunamis was computed using
the one-dimensional non-linear shallow water equations

∂η
∂

∂
∂t t

+ =M 0

(8)

∂
∂

∂
∂
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M
t x
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
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2
0,

where D = η + h.

Equations (8) were solved by an explicit finite-
difference scheme described by Goto et al. (1997). The grid
size was set to 10 m and the time step to 1/20 s. The deep-
water tsunami waveforms in Figures 5a and 6a were
propagated to the coast using a bathymetric profile (Figure
7) taken from the Pacific Central Coast of Mexico i.e., a near-
constant ocean depth connected to a deep trench and to a
pronounced continental slope, ending in a narrow length
continental shelf. The beach slope was assumed to be 5%.

The amplification factors for medium and large
tsunamis were 4 and 3, respectively. Thus dispersion is a
necessary condition to adequately reproduce the coastal
effects, since differences in the height predictions of the
leading wave in deep ocean can produce significant
differences in coastal run-up. Thus, for the large tsunami
(Figure 6a), overestimations of up to 3 m in run-up can occur
with the non-dispersive theory. The oscillatory tail shown in
Figures 5a and 6a, caused by frequency dispersion, can
contribute in producing a significant difference between the
predictions of dispersive or non-dispersive theories, as the
oscillations interacting with the continental slope can produce
a resonance pattern with a maximum amplitude occurring
several minutes after the arrival of the leading wave. This
may be a cause of the resonance pattern observed in Kahului
and Hilo, as we will see later (Figures 11b and 12).

Finally, when the Boussinesq equations are solved by
finite difference methods, the solution will contain effects of
strong numerical dispersion and dissipation introduced by
the finite difference representation of the higher-order
derivatives. The overall effect will be to underestimate the
height of the leading wave as opposed to the analytical
solution. Figure 8 illustrates a particular example, where the
solution obtained by finite differences underestimates by
~30% the height of the leading wave with respect to the height
obtained for the analytical solution.

A SIMPLIFIED MODEL FOR TRANSOCEANIC
TSUNAMI PROPAGATION

The numerical simulation of transoceanic tsunamis
requires a major computational effort to provide real-time
tsunami warnings. A one-dimensional method to estimate the
height of the leading wave is proposed here, not instead of,
but in addition to early tsunami warnings.

Two-dimensional axisymmetric long-wave propagation
in an ocean of constant depth, without considering Earth
rotation, is represented by the one-dimensional zero-order
Bessel equation obtained from equations (1) in polar
coordinates (r, θ). The classical solution is (Lamb, 1932):
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η ω( , ) ( )cos( )r t B J k r tn n

n

= ∑ 0 , (9)

where J0 is the Bessel function of zero order and r is the
radial distance from the origin of the disturbance. The
damping function, H, due to two-dimensional wave spreading
is given by the modulus of the Hankel function:

         H k r kr( , ) = 2
π . (10)

Since the directivity of the tsunami depends on the
rupture length, L, and on θ, the damping function can be
modified by introducing a suitable directivity function, β (L,
θ), that measures the departure from axisymmetric wave
spreading:

˜ ( , )H k r
kr

= 2
π β . (11)

Figure 9 illustrates the directivity function obtained
numerically from comparison of the two-dimensional tsunami
propagation obtained by means of (6) and (7) with one-
dimensional propagation obtained by means of (8). The
nonlinear term in (8) was dropped, and the Imamura number
was set to 0.6. In the experiments, L was varied between 100
km and 1000 km at steps of 50 km, while W was set to L/4.
The principal axis was oriented at θ = 90°. The directivity
function was assumed at r = 6000 km for values of θ from 0°
to 90° at steps of 10°. In all experiments the wavelength of
the leading wave is ~2W; thus the energy spectrum will be
concentrated around k0 = π /W. Therefore, the directivity
function can be taken as an estimate for the most significant
wavenumber, k = k0. This approximation has the advantage
of having a single spectral value of H̃  for correcting the
amplitude in results obtained with the one-dimensional
model. Summarizing, the damping function becomes a
damping factor that can be estimated as a function of the
directivity, β, the rupture length, L, and the distance, r, from
the source along the path S:

Fig. 5. Medium size tsunami after being propagated a distance of 6000 km from its origin by employing dispersive theory (line with circles)
and nondispersive theory (solid line). a –Along the principal axis. b –Along the diagonal axis.
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˜ ( , , )

( , )
H L r L

r L
β

π β θ
=

2 2 . (12)

Figure 10a shows a synthetic tsunami, η  (r0, t),
computed at the location of the BPR by one-dimensional
propagation of the Shikotan tsunami along the path S, shown
in Figure 1. Figure 10b compares the BPR data and the
synthetic tsunami corrected by the damping factor, i.e.,

˜ ˜ ( , ),η η= H r t0  where r0 = 6370km, and the directivity function

as taken from Figure 9 is β(120km, 30°). There is an excellent
agreement between the BPR data and the corrected synthetic
tsunami, even when the angle in the directivity function varies
from 20° to 40°.

In order to assess the efficiency of the directivity
function, the one-dimensional simulation of the October 4,
1994 Shikotan tsunami was propagated along the paths to
Wake Island and to Kahului Bay (Hawaii) up to a depth of

10 meters. The leading wave of the synthetic tsunami is only
2 cm (~20%) larger than that observed at Wake Island (Figure
11a). The directivity function was taken as β(120km, 90°)=
0.44, and r0 = 3200km. Both the amplitude of the leading
wave and the following oscillations reproduce approximately
the amplitudes and periods of the observed tsunami. Since
the shape of the harbor cannot be represented in the one-
dimensional model, the results suggest that the resonance
period (~14 min) observed at Wake Island is primarily due
to the steep grade of the island slope into the deep ocean.
The travel time (~7 min) for a barotropic wave from the coast
to the edge of the island slope was computed from the
bathymetric profile and is consistent with the resonance
period.

Kahului Bay was chosen as an extreme test for the one-
dimensional model. This is a v-shaped Bay that will increase
the amplitude of any incoming plane wave front; it is located
in a caustic region of ray convergence for this particular

Fig. 6. Large tsunami after being propagated a distance of 6000 km from its origin by employing dispersive theory (line with circles) and
nondispersive theory (solid line). a –Along the principal axis. b –Along the diagonal axis.
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Fig. 7. Employed bathymetric profile to propagate the deep-water tsunami waveforms in Figures 5a and 6a, to the coast.

Fig. 8. One-dimensional propagation of the medium size tsunami after being propagated a distance of 2700 km from its origin: By means of
the analytical solution of Boussinesq equations by Fourier series (line with circles) and by the numerical solution of Boussinesq equations

by the finite difference method (solid line).
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tsunami (see Figure 1). Figure 11b shows a comparison
between the observed and synthetic tsunami at Kahului. The
directivity function was taken as β(120km, 45°) = 1.13, and
r0 = 5700km. The observed amplitude of the leading wave is
10 cm (~50%) larger than the synthetic amplitude. Hence
the local response of the bay must be determined in advance
if this method is going to be used for real-time warning
purposes; otherwise it will underestimate the wave heights
at the coast.

As an example of a simulated one-dimensional large
tsunami, the 1964 Alaska tsunami was propagated to Hilo,
Hawaii. In Figure 12, the one-dimensional method reproduces
adequately the leading wave recorded at Hilo. The
bathymetric profile from the source to Hawaii was taken along
the path that joins Hilo with the center of the rupture (150°W,
59°N). The directivity function was taken as β(800km, 40°)
= 1.55, while r0 = 4400km. As in the case of Wake Island, the
later oscillations in the synthetic tsunami at Hilo can be
considered as evidence that the resonance period (~40 min)
is due to the island slope. The travel time (~20 min) from the

coast to the edge of the slope is consistent with the resonance
period.

The one-dimensional model proposed here can be used
as a complementary approach to evaluate the risk of potential
tsunami flooding. It takes only 2 minutes of CPU time in a
Pentium-I processor to propagate a tsunami from Alaska to
Hawaii. For any particular region of interest (e.g., Tsunami
Reception Region, TRR), the method requires a single two-
dimensional numerical tsunami propagation departing from
the TRR in order to obtain the travel-time matrix. The tsunami
initial condition can be a Gaussian surface. Once the travel-
time matrix is obtained, the paths S and the corresponding
bathymetric profiles can be obtained for every tsunami-
generating region. They can be stored in separate files named
for the coordinates of the tsunami-generating region. An
algorithm based on the rupture parameters and on the
epicenter location can compute the one-dimensional tsunami
initial condition and propagate it along the selected pre-
computed path. The angle, θ, can be chosen as 90° or 45° in
order to have an early estimation of the expected maximum

Fig. 9. Directivity function, β(L,θ); θ = 90° is the direction of the principal axis. Numbers in degrees indicate the angle θ.
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and medium wave height in the deep ocean near the TRR.
The one-dimensional tsunami signal in deep-ocean can be
used as an input for two-dimensional near-shore tsunami
propagation and run-up. The directivity function may be
improved and tested for every particular TRR. The validity
of the directivity function is conditioned to the absence of
caustic regions where tsunami convergence is expected.

DISCUSSION AND CONCLUSIONS

The frequency dispersion mechanism of tsunami
propagation has been found for the deep-ocean signature of
the Shikotan tsunami as well as for the evolution of large
and medium-size tsunamis, by comparing the linear
dispersive model with the linear non-dispersive model.

(i) Frequency dispersion as prescribed by the Boussinesq
equations is a necessary and sufficient condition for the
propagation of large and medium-size tsunamis.

(ii) The analytical solution of the Boussinesq equations, or
the numerical solution of shallow water equations
(setting the Imamura number close to unity) should be
used as the most adequate governing equations for
transoceanic tsunami propagation.

(iii) The use of a simplified one-dimensional method with a
proposed directivity function in early tsunami warning
systems may significantly improve the wave-height
predictions in real-time, when the local response and
the bathymetry for each location are known in advance.
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Fig. 10. a –The synthetic October 4, 1994 Shikotan tsunami at the BPR location obtained by the one-dimensional model without considering
the directivity function. b –Comparison of the observed October 4, 1994 Shikotan tsunami (BPR data; line with circles) with the synthetic one-
dimensional tsunami (solid line) corrected by the directivity function β(120km, 30°). Dotted lines correspond to the synthetic tsunami corrected

by using β(120km, 20°) and β(120km, 40°). The origin of the time axis is defined as the origin time of the earthquake.
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Figure 11. a –Comparison of the observed October 4, 1994 Shikotan tsunami in Wake Island (line with circles) with the synthetic one-
dimensional tsunami (solid line) corrected by using the directivity function β(120km, 90°). b –Comparison of the observed October 4, 1994
Shikotan tsunami in Kahului Bay, Hawaii, (line with circles) with the synthetic one-dimensional tsunami (solid line) corrected by using

β(120km, 45°). The origin of the time axis is defined as the origin time of the earthquake.

Figure 12. Observed March 28, 1964 Alaskan tsunami in Hilo, Hawaii, (line with circles) and the synthetic one-dimensional tsunami (solid
line) corrected by using the directivity function β(800km, 40°). Wide circles on the peaks of the observed tsunami indicate the resonance

period (~40 min).
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