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Resumen

En este trabajo se presenta una estrategia de 
paralelización de un simulador completamente 
implícito para la solución numérica del modelo 
de flujo bifásico incompresible en medios 
porosos usando unidades de procesamiento 
gráfico (GPU, por sus siglas en inglés). El modelo 
matemático está basado en las ecuaciones 
de conservación de masa para las fases agua 
y aceite. Se utiliza la formulación Presión-
Saturación para simplificar el modelo numérico. 
La técnica de Volumen Finito y el método de 
Newton-Raphson se usan para discretizar y 
linealizar las ecuaciones diferenciales parciales, 
respectivamente. Se propone la construcción 
del Jacobiano directamente en la GPU, lo que 
reduce la información que debe intercambiarse 
entre la CPU (Unidad Central de Procesamiento 
CPU, por sus siglas en inglés) y la GPU. El 
simulador utiliza bibliotecas que ya incluyen 
los métodos del subespacio de Krylov para 
resolver sistemas de ecuaciones lineales. Se 
comparan los resultados de tres problemas de 
referencia utilizando diferentes tamaños de 
malla. También se evalúa el rendimiento del 
código numérico desarrollado. Los resultados 
de la GPU versus CPU indican que el simulador 
numérico alcanzó hasta 22x de aceleración para 
construir el Jacobiano y 3x de aceleración para 
ejecutar el código numérico completo usando la 
paralelización GPU.

Palabras clave: Modelo bifásico, Newton-
Raphson, Unidades de Procesamiento Gráfico  
(GPU), construcción del Jacobiano, aceleración.
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Abstract

In this paper a parallelization strategy of a fully 
implicit simulator for the numerical solution of 
the incompressible two-phase flow model in 
porous media is presented using GPUs (Graphics 
Processing Units). The mathematical model 
is based on the mass conservation equations 
for the water and oil phases. Mathematical 
formulation of Pressure-Saturation is used 
to simplify the numerical model. The Finite 
Volume technique and the Newton-Raphson 
method are used to discretize and linearize the 
partial differential equations, respectively. The 
construction of the Jacobian directly on the GPU 
is proposed, which reduces the information 
that needs to be exchanged between the CPU 
(Central Processing Unit) and the GPU. The 
simulator uses libraries that already include 
methods that belong to the Krylov subspace to 
solve linear equations systems. The results of 
three benchmark problems by using different 
grid sizes are compared. The performance 
of the numerical code developed is also 
evaluated. Results of the GPU against the CPU 
indicate that the numerical simulator reached 
22x of speed up to build the Jacobian, and 3x 
of speed up for executing the whole numerical 
code by using the GPU parallelization.
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Raphson, Graphics Processing Units (GPU), 
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Introduction

Nowadays new techniques called Enhanced 
Oil Recovery Methods (EOR) are applied to 
improve the oil recovery in a hydrocarbon 
reservoir. Lake (1989) gives a definition for 
the EOR methods: EOR is oil recovery by the 
injection of materials not normally present in 
the reservoir. This definition covers all modes 
of oil recovery and most oil recovery agents.  
Considering this definition the EOR methods 
might consider both secondary and tertiary 
recovery. Before EOR methods are applied there 
is a technique that almost always has to be 
considered, that is, the waterflooding technique. 
Waterflooding technique is the oldest assisted 
recovery method and it remains as the most 
common method used to sweep the oil that was 
not produced by natural pressure, and to keep 
the oil pressure when this has declined due to 
reservoir conditions (Latil, 1980).On the other 
hand, due to the growing need in the oil industry 
to make faster and more efficient calculations to 
simulate the recovery conditions before, during 
and after the production life of a reservoir, it is 
necessary to test new computational techniques 
that reduce the run time of the numerical 
simulators. Several investigations have been 
carried out to improve the run time of the 
reservoir simulators (Killough et al., 1991; 
Shiralkar et al., 1998; Ma and Chen, 2004; 
Dogru et al., 2009). Most of these papers have 
been developed using distributed computing. 
Recently, Wang et al. (2015) developed a 
scalable black oil simulator using ten millions 
of grid blocks approximately, their simulator 
reached a scalability factor of 1.03 using 2048 
processors.  Also Liu et al. (2015) developed 
a three phase parallel simulator applying MPI 
(Message Passing Interface) for communications 
between computational nodes and OpenMP for 
shared memory. They obtained an efficiency 
of 95.7% by using 3072 processors.  However, 
there is a limitation to use this technique, since a 
computational cluster with tens until thousands 
of processors is needed to achieve the desired 
speed up.

As an alternative NVIDIA has developed a 
programing language called CUDA (Compute 
Unified Device Architecture) which can be used 
to take advantage of the power computing 
graphics cards for general purpose simulations. 
Yu et al. (2012), used GPUs to parallelize a 
reservoir simulator which can run large scale 
problems. They used over one million grid blocks 
obtaining a good speed up compared to the 
numerical code of the CPU. Li and Saad (2013), 
developed a numerical code of preconditioned 
linear solvers based on GPU, their numerical 
experiments indicate that Incomplete LU (ILU) 

factorization preconditioned GMRES method 
achieved a speed up nearing to 4 compared 
versus CPU numerical code. Liu et al. (2013), 
reported improved preconditioners and algebraic 
multigrid linear solvers applied to reservoir 
simulations using GPUs. De la Cruz and Monsivais 
(2014) developed a two phase porous media 
flow simulator to compare the performance 
of a single GPU with a single node of a cluster 
using distributed memory. These authors found 
that a single GPU is better than a computational 
node with twelve processors. Trapeznikova 
et al. (2014) developed a software library for 
numerical simulation of multiphase porous 
media flows that is applied to GPU-CPU hybrid 
supercomputers. The model is implemented 
by an original algorithm of the explicit type. 
An explicit three-level approximation of the 
modified continuity equation is used. After that 
the Newton method is used locally at each point 
of the computational grid. Authors used SPE-
10 project as benchmark, they achieved a 97x 
of speed up when they compare the run time 
obtained by a single GPU versus one CPU, and 
18x of speed up when a computational node 
of six processors is used. Mukundakrishnan et 
al. (2015), presented the implementation in 
GPUs of a black oil simulator, which uses a fully 
implicit scheme for the discretization in the time 
and the constrained pressure residual -algebraic 
multigrid (CPR-AMG) to solve the linear system 
equations. They reported an average of 20 
minutes for the run time to solve a problem 
with 16 million of active blocks by using 4 
GPUs. Anciaux-Sedrakian et al. (2015) made a 
numerical study of different preconditioners such 
as: Polynomial, ILU and CPR-AMG which were 
implemented in a heterogeneous architecture 
(CPU-GPU). They emphasize two key points 
to obtain high performance in heterogeneous 
architectures; the first is to maximize the 
utilization and occupancy of the GPU and the 
second refers to minimize the high cost of 
transferring GPU data to the node with the 
CPUs and vice versa. Their results show that 
a combination of 1 processor plus 1 GPU is 
approximately 2 times faster compared versus 
an 8-processor node by applying CPR-AMG 
preconditioner.

In this work a simulator for oil recovery 
was developed based in the water injection 
process and the simultaneous solution technique 
described by Chen et al. (2006). A parallelization 
scheme is proposed by using GPUs for both the 
construction of the Jacobian matrix and the 
solution of the linear system of equations.

The paper is organized in this way: In 
Section 2, the mathematical equations of 
the water injection and pressure-saturation 
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formulation model are introduced. In Section 
3, the numerical discretization is presented by 
using the Finite Volume Method (FVM) and the 
linearization of the equations by applying the 
Newton-Rapshon method (NR). In Section 4, 
the computational implementation of the CPU 
and GPU are shown and main algorithms are 
explained. In Section 5, numerical results of 
three benchmark problems are presented. Also 
in this section, the performance of the parallel 
numerical code is evaluated by comparing the 
run time obtained in both GPU and CPU.

Mathematical model of the incompressible 
two-phase flow  in porous media

The mathematical model of the incompressible 
two-phase flow can be used to simulate the 
water injection into a hydrocarbon reservoir. 
The mass balances are obtained by taking into 
account two phases: oil and water. Governing 
equations can be obtained by applying an 
axiomatic formulation (see Herrera and Pinder, 
2012 for a complete description on this 
formulation). A general local balance mass 
equation can be written as follows:

	
∂
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( ) ( )φρ
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S
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Here f is the porosity of the media ra, Sa, ua,  
and qa represent the density, saturation, velocity 
and source of phase a. The Darcy’s velocity is 
used expressed as follows:
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where k  is the diagonal tensor of absolute 
permeability and kra is the relative permeability 
of phase a; the Greek letters Fa and ma are the 
potential and the dynamic viscosity for phase a, 
respectively. Now, substituting (2) into (1) and 
replacing a by o and w, the next two coupled 
mass balance equations were obtained (Chen 
et al., 2006):
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The mass balance equations are interrelated 
by the following mathematical expressions: 

	 S So w+ = 1	 (5)

	 Φα αρ ρ+ − ℘w z 	 (6)

	 p p pw o cow= − 	 (7)

	 p p Scow cow w= ( )	 (8)

where pa is the pressure of the phase a, Φα αρ ρ+ − ℘w z is 
the magnitude of gravity, z is the depth and pcow 
is the oil-water capillary pressure as a function 
of Sw.

Equations (3) and (4) are non-linear and 
strongly coupled. In order to simplify the 
numerical solution of these equations, the 
pressure-saturation formulation was used which 
consists in selecting oil pressure and water 
saturation as primary variables and in using the 
fractional flow theory to derive one equation 
for pressure and one equation for saturation 
(Peaceman, 1977; Chen et al., 2006). The mass 
balance equation for water phase is:
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Considering non-compressible flow, equation 
(9) becomes:
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where the following substitutions were carried 
out:

	 =p
dp
dS

S
cow

cow

w
w

∆ ∆

	 (11)

	 λ
w

rw

w

k
=
μ

	 (12)

Taking into account the fractional flow of the 
phase a (fa) that is defined as the quotient of 
the phase a mobility (la) over the total mobility 

(l), f
α

αλ
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= , a general pressure equation was 

derived:
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For more details about fractional flow 
formulation readers can consult Chen et al., 
2006. Considering no change in the porosity, 
and non-compressible flows, equation (13) can 
be reduced to:
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Equations (10) and (14) are coupled and 
non-linear. The Newton-Raphson approach was 
used to linearize the equations and solve them 
using a fully-implicit strategy. In this work three 
different cases of study are described.

Numerical model

In this section a brief description is given of 
the use of the Finite Volume Method (FVM) to 
discretize equations (10) and (14), and the 

Newton-Raphson method to linearize those 
equations.

Calculation of residuals by using the Finite 
Volume Method

As a way to show how FVM is applied 
to compute the residuals for the governing 
equations, the saturation equation for the three-
dimensional case is discretized. Integrating 
equation (10) with respect to time and the 
control volume shown in Figure 1, equation (15) 
is obtained:
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In order to evaluate the terms of equation 
(15) the following considerations were taken into 
account: 1) a backward Euler approximation is 
used, 2) the permeability tensor is diagonal and 
3) the space derivatives are approximated using 
central differences. Therefore, the discretized 
form of equation (15) in terms of a residual is 
written as follows:

F i g u r e  1 .  T h r e e -
dimensional stencil to apply 
the FVM. DV= DxDyDz is 

defined.
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where the transmissibility is computed as T
k A
xw

ii w i

i
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δ

 for i=1, 2, 3; the specific weight is defined 

as γ ρw w= ℘ , Ai is the face area of volume perpendicular to the axis i, for example, A1 = DyDz, and 
dxi represents the distance between neighboring  volumes centers. Similarly the residual Ro for the 
pressure equation (14), is expressed as follows:
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Here Ti, implies the calculation of the transmissibility considering the total mobility l and Tw,i refers 
to the transmissibility considering the mobility of the water phase lw. In equations (16) and (17) the 
superscript n + 1 is omitted for simplicity.

Newton-Rapshon Method

Because there are nonlinearities in the discretized equations, the Newton-Raphson method was 
selected to linearize and to solve these equations. The main advantage of the method is its numerical 
stability compared with methods which use explicit discretization (Abou-Kassem et al., 2006; Chen, 
2007). For applying the Newton-Raphson method po

n+1 and Sw
n+1 were selected as primary variables. 

Thus, the system of equations to solve has the following form
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Matrix on the left of equation (18) is the Jacobian and superscript k is used to indicate the Newtonian 
iteration. The system written in extended form gives:
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Equations (19), (20) along with the residuals (16) and (17) are used to build the linear system as 
shown in Figure 2, where the subscript m refers to the total number of discrete volumes.

One of the main issues in this kind of problems 
is how to calculate the Jacobian elements and 
how to solve the resulting linear system. Both 
tasks are time consuming, therefore new 
techniques are needed to reduce the time used 
in doing these computational processes. In 
the next section details of the computational 
implementation that makes use of graphical 
processing units (GPUs) are presented in order 
to parallelize the construction of the Jacobian 
and the solution of the resulting linear system

Computational implementation

In this section, the computational methodology 
used is briefly described to implement the 
algorithms provided by the numerical methods 
outlined in previous sections.

CPU Implementation

First of all, the algorithms to be executed 
in an ordinary CPU were implemented for 
comparison purposes. The codes were written 
using the C++ language and the EIGEN library 
(Jacob and Guennebaud, 2016), the last one 
was used to simplify the array and matrices 
management and the solution of the linear 
systems of equations. The pseudocode of the 
main algorithm is shown in Figure 3.

In the first three lines of the pseudocode 
shown in Figure 3, all required variables and 
arrays are declared and initialized with adequate 
values, this includes the initial and boundary 
conditions, petrophysical values, size of the 
mesh, time step, etc. In line 4 the simulation 

Figure 2. Linear system equations for the primary variables po and Sw.
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initiates and is carried out until the total number 
of time steps is reached. Inside  this first cycle, 
another one implements the Newton-Raphson 
(NR) algorithm. This internal cycle starts in line 
5 and is carried out until the norm of the change 
of the water saturation (∣dSw ∣) is less than a 
prescribed value (e) or the prescribed maximum 
number of iterations of the NR algorithm is 
reached. Lines 6 to 9 represent the main steps 
to solve the problem and use the highest 
percentage of CPU time. In lines 6 and 7 every 
entry of the Jacobian matrix is calculated, this 
means to calculate the discretized components 
of the residuals, equations (18) and (19), and 
their corresponding derivatives. It is worth 
mentioning that all derivatives are done 
numerically and first order forward finite 
differences are used to do so. Then in step 9 the 
Jacobian matrix is build using the Compressed 
Row Storage (CRS) format in order to take 
advantage of the sparseness of the matrix and 
to save memory. In the calculations, these 
three steps take around 8% of the total time. 
In line 9 the linear system is solved using the 
Biconjugate Gradient Stabilized (BICGSTAB) 
method algorithm which is contained in the 
EIGEN library. This step takes around 75% 
of the total CPU time. Once the NR algorithm 
has converged, all the required variables were 
updated to be used in the next time step, line 
11. Finally, the solution (primary variables) 
were saved or printed every time the Iteration 
variable is divisible by a prescribed Frequency. 
This frequency will become important in the GPU 
implementation.

GPU Implementation

The implementation in CPU presented in the 
previous section is standard and do not have any 
complications. For the GPU implementation the 

Compute Unified Device Architecture (NVIDIA, 
2012) and the CUSP Library were used, which 
provides a high-level interface for manipulating 
sparse matrices and solving sparse linear 
systems (Maia and Dalton, 2016). The present 
implementation is almost done totally in GPU, 
which means that the amount of information 
exchange between CPU and GPU is relatively 
low. In this sense, the pseudocode of the main 
algorithm for GPU implementation is similar 
to the one shown in Figure 3. The following 
differences have to be mentioned: a) the cycle 
starting in line 4 require all the variables and 
arrays defined in lines 1-3, therefore a first 
exchange of information is done from CPU to 
GPU, however this is minimal due to the fact 
that the biggest arrays are constructed directly 
in the GPU; b) the operations in lines 6, 7, 8, 
9 and 11 are all coded in CUDA, therefore, 
several kernel functions occur that are executed 
in the GPU device; c) the operation in line 13 
requires a movement of information from GPU 
to CPU, however this is done only every time 
the Iteration is divisible by the Frequency and 
this can be just one time, for example when the 
simulation is finished, or when the user requires 
the information of the final solution.

The kernel functions are executed in parallel 
by threads. These threads are defined by global 
indexes that belong to a grid of blocks. The grid 
and block sizes are defined by the user. The grid 
can be defined for 1, 2 or 3 dimensions. Each 
block has a finite number of threads, usually up 
to 1024 thread count. The maximum grid size 
is given by the manufacturing specifications of 
each graphics card. All this features of modern 
GPUs can be consulted elsewhere in NVIDIA 
CUDA web site. Taking all this into account, it is 
only possible to efficiently parallelize numerical 
codes that do not exceed the number of threads 

Figure 3. Pseudocode of the main algorithm.
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that can be executed in the grid of blocks. On the 
other hand, it is easy to parallelize functions that 
execute the same operations over the entries of 
arrays, since only the threads indexes have to 
be defined and this definition replaces each loop. 
As an example of this method, Figures 4 and 5 
show an extract of the codes for calculating the 
Jacobian block corresponding to the residual Ro 
and its derivatives (∂Ro /∂po), in CPU and GPU 
respectively.

In the function jacobianCoeff_RoPo3D() 
all the coefficients of Jacobian block ∂Ro /∂po 
were calculated. The code is standard and is 
based in tridimensional arrays which contain 
some variables related to the Cartesian mesh 
for the numerical simulation. Therefore,  three 
nested cycles occur, one cycle for each axis. 
In the most internal cycle, several functions 
are executed to carry out several numerical 
methods, among them: interpolations for initial 
relative permeability and saturations from 
centers of volumes to its faces (lines 5 and 6), 
calculation of relative permeability using data 
from tables (line 7), calculations of coefficients 
of the residual and its derivatives (lines 9 and 
10), and the assembling of the corresponding 
block (line 11).

In the same way as in the Figure 4, in Figure 
5 an extract of code of the kernel function is 
shown that implements the calculation of the 
Jacobian block ∂Ro /∂po. The kernel function 
jacobianCoeff_RoPo3D() is executed in the 
GPU. The first thing to do is to determine the 
thread index, see lines 2-4. Using this index it 
is possible that each thread of the block in the 
grid, execute the operations defined in lines 
5-12 concurrently. Line 5 is required to assure 
that the index is inside the limits of the arrays. 
Lines 6 to 12 consist of kernel functions, similar 
to the functions defined in CPU, see Figure 4, 
but using the index to perform each one of the 
numerical methods needed to calculate the 
corresponding block of the Jacobian matrix. 
These kernels are device functions that can only 
be executed by another kernel and are able to 
use the GPU memory (Sanders, 2010; NVIDIA, 
2012). Two kind of memories were used: global 
memory to store the primary variables (Sw and 
po), the properties of the porous media (k, f, 
etc) and some other important arrays of the 
simulation; constant memory is used to store 
constant values, i.e, the viscosities, conversion 
factors and some tables of properties (relative 
permeability). Figure 6 shows schematically how 
the variables are stored within the GPU memory. 

Figure 4. Function to calculate the Jacobian block.

Figure 5. Kernel function to calculate the Jacobian block.
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Finally, once the Jacobian components has 
been built, the linear system of equations is 
constructed in CRS format. This extra step is 
needed in order to use the algorithms of the 
EIGEN and CUSP libraries. Both libraries require 
a matrix in the CRS format and a right hand 
side (rhs) vector. The result is stored in another 
vector that contains the solution of the linear 
system.

Numerical results

As a way to validate the numerical code, in this 
section numerical results obtained for three 
different cases are presented. Also numerical 
performance experiments were carried out to 
test computationally the parallel numerical code 
that is compared versus serial code.

Buckley Leverett

The Buckley-Leverett model describes the 
displacement of oil by water in an horizontal 
domain. This mathematical model is widely 
used in the validation of two phase fluid flow 
simulators, because it has an analytic solution 
for the water saturation profile. The hypothesis 
of the Buckley-Leverett model are:

a) The displacement occurs at a one-dimensional 
medium.

b) The porous media is isotropic.
c) No effects of capillary pressure nor gravity 

forces are considered.
d) There are no sources nor sinks.

e) Water gets injected to a constant flow 
through the left boundary of the domain. 
Oil is produced on the right boundary at a 
constant pressure.

The parameters to carry out the simulation 
are shown in Table 1. Relative permeabilities 
kra(Sw) can be obtained from Chen et al. (2006).

In this paper a comparison of the analytical 
solution versus the solution obtained numerically 
is presented. The numerical parameters were 
selected as follows: to evaluate the derivatives 
within the Jacobian blocks increments of 
ΔSw=1x10-05 for water saturation and Δpo=0.1 
for the oil pressure were used. Stop criterion for 
leaving the Newton-Rapshon loop was selected 
to: |δSw| <1x10-05 and a fixed time step of 1 day 

Figure 6. GPU memory used to store variables to build the Jacobian.

Property	 Value

Length of domain (Lx)	 1,000 (ft)
Absolute permeability (k)	 100.0 (mD)
Porosity (f)	 0.20
Water viscosity (mw)	 0.42 (cP)
Oil viscosity (mo)	 15.5 (cP)
Residual water saturation (Swr)	 0.40
Residual oil saturation (Sor)	 0.18
Injection velocity (vinj)	 2.0E-06 (ft/s)
Production pressure (pout)	 1,000 (psi)

Table 1. Parameters to solve the Buckley-
Leverett problem.
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was chosen. The number of discrete volumes 
selected to study its effect in the solution were: 
100, 500, 1,000, 5,000 and 10,000. The total 
time simulation was of 120 days and results 
are saved every 30 days. Table 2 shows a 
comparison between analytical and numerical 
solutions at some selected positions. As shown 
in this table  as the number of volumes increases 
the relative error and the root mean square 
deviation (RMSD) respect to the analytical 
solution decreases.

Figure 7 shows the water saturation and 
pressure profiles obtained for 120 days of total 
simulation by using 10,000 discrete volumes. 
Results of the water saturation profile are 
congruent with the analytical solution (dashed 
line). This result indicates that the problem has 
been solved correctly.

	Number of	 Position	 Simulation	 Sw	 Sw	 Error	 RMSD
	 discrete	 x (ft)	 time (days)	 Numerical	 Analytical	 %	 At the whole
	 volumes				    domain

	 100	 145	 30	 0.4721	 0.4	 18.033	 0.01510
		  275	 60	 0.4792	 0.4	 19.809	 0.01590
		  405	 90	 0.4801	 0.4	 20.037	 0.01598
		  535	 120	 0.4786	 0.4	 19.666	 0.01875
	 500	 145	 30	 0.42238	 0.4	 5.5942	 0.01127
		  275	 60	 0.42049	 0.4	 5.1216	 0.01095
		  405	 90	 0.40972	 0.4	 2.4295	 0.01104
		  535	 120	 0.40849	 0.4	 2.1213	 0.01093
	 1,000	 145	 30	 0.40784	 0.4	 1.9593	 0.00987
		  275	 60	 0.40399	 0.4	 0.99737	 0.01027
		  405	 90	 0.40080	 0.4	 0.19905	 0.00981
		  535	 120	 0.40056	 0.4	 0.13941	 0.00962
	 5,000	 145	 30	 0.40028	 0.4	 0.07096	 0.00944
		  275	 60	 0.39998	 0.4	 0.00525	 0.00942
		  405	 90	 0.39999	 0.4	 0.00170	 0.00897
		  535	 120	 0.40001	 0.4	 0.00150	 0.00839
	 10,000	 145	 30	 0.400130	 0.4	 0.03159	 0.00916
		  275	 60	 0.400020	 0.4	 0.00568	 0.00917
		  405	 90	 0.400001	 0.4	 0.00093	 0.00881
		  535	 120	 0.400001	 0.4	 0.00091	 0.00827

Table 2. Numerical results obtained for the Buckley-Leverett problem.

Figure 7. Results for 10,000 discrete volumes: a) Water saturation profile Sw, analytical solution (dashed line) 
versus numerical solution (continuous line); b) Oil pressure profile po.

a) b)
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Five Spot

The model known as “Five Spot” describes the 
displacement of oil by water in an isotropic 
domain, in which a producer well and an 
injector well are placed in the opposite corners 
of the domain (See Figure 8). In the Five Spot 
conceptual model the follow assumptions are 
considered:

a) The displacement occurs at a bidimensional 
domain.

b) The porous media is isotropic.
c) The effects of capillary pressure are 

considered.
d) There are one source (injector well) and one 

sink (producer well).
e) Gravity forces are neglected.

The parameters to carry out the simulation 
are shown in Table 3. Relative permeabilities kra 
(Sw) and capillary pressure pcow can be obtained 
from Chen et al. (2006).

Figure 8. Five Spot physical model.

	 Property	 Value

	 Size of domain (Lx x Ly)	 1,000 x1,000 (ft)

	 Absolute permeability (k)	 100.0 (mD)

	 Porosity (f)	 0.20

	 Water viscosity (mw)	 0.096 (cP)

	 Oil viscosity (mo)	 1.14 (cP)

	 Residual water saturation	 0.22
	 (Swr)

	 Residual oil saturation	 0.20
	 (Sor)

	 Injection pressure (pin
wb)	 3,700 (psi)

	 Production pressure (pout
wb)	 3,500 (psi)

Table 3. Parameters to solve the Five Spot 
problem (Chen et al., 2006).
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For this problem the total time simulation 
was selected to 8,000 days and the results are 
reported every 500 days. Numerical parameters 
are the same to those in the Buckley-Leverett 
problem. Because there is no analytical solution 
for this problem, it is validated with the results 
reported by Chen et al. (2006). Figure 9 a) shows 
the production of water and oil in reservoir barrels 
per day (RB/day) throughout the simulation 
time. In this figure it can be seen that the 
results reported by Chen et al. (2006) and those 
obtained in this work have a similar qualitatively 
behavior. The difference between curves may 
be due to the numerical techniques used, since 
Chen et al. (2006) used an adaptive time step 
with an IMPES scheme. The RMSD obtained for 
the production curves are 43.88 and 137.94 for 
oil and water production, respectively. In Figure 
9 b) fractional flow (Fw) curves are compared. It 
can be appreciated that the water cut happens 
after 1,000 days of simulation, which is almost 
the same result reported by Chen et al. (2006).

To verify the solution shape two more 
simulations were carried out, one considering 
30x30 mesh size of and another using 90x90 
volumes. Values obtained for RMSD using 30x30 
volumes were 41.97 and 135.44; while by using  
90x90 volumes were 41.02 and 134.82, for oil 
and water production respectively.

Figure 10 shows the water saturation profiles 
at different simulation times in the whole 
numerical domain. This figure is presented in 
order to clarify how the waterfront sweeps the 
oil from the porous medium.

The seventh SPE project

The seventh SPE project is a benchmark that 
describes the water injection and oil production 

using horizontal wells, this problem was adapted 
by Nghiem et al. (1991) and Chen et al. (2006) 
for two-phase fluid flow. In the ´resent case 
capillary pressure and gravity forces were 
considered. Therefore equations (10) and (14) 
are used without any modification.

To solve this problem the SPE proposes a 
mesh of 10x10x7 (Figure 11). This mesh is 
refined to the y axis center, in order to place 
the injection and production wells. The length of 
the blocks in the x axis are uniform and equal to 
300 ft (dx = 300 ft). For the length of the blocks 
in the y axis, the distribution is as follows: dy1 = 
dy9 = 620 ft, dy2 = dy8 = 400 ft, dy3 = dy7 = 200 ft, 
dy4 = dy6 = 100 ft and dy5 = 60 ft. For the z axis 
dzk = 20 ft for k1, 2, 3, 4, dz5 = 30 ft and dzk= 50 ft 
were used. Injection well is placed in the layer 
dz6, at the center of the axis y and it crosses 
all the blocks in the x axis. Production well is 
placed in the layer dz1, at the center of the axis 
y and it crosses only the blocks dx6, 7, 8 in the x 
axis. Parameters to execute the simulation are 
shown in Table 4. Relative permeabilities kra(Sw), 
capillary pressure pcow(Sw), and initial conditions 
can be obtained from Nghiem et al. (1991).

For this problem the total simulation time 
was selected to be 1,500 days and results are 
reported every 100 days. Results are validated 
by comparing production curves reported by 
Chen et al. (2006). Figure 12 a) shows the oil 
production in stock tank barrels per day (STB/
day) during the entire simulation time. It can be 
noted that the results are qualitatively similar to 
those reported by Chen et al. (2006), although 
the curve reported by them declines slightly 
faster. The accumulated oil production curves 
are also compared, these results are shown in 
Figure 12 b).

Figure 9. Results obtained  using 10x10 discrete volumes: a) water and oil productions Qw-Qo in reservoir barrels 
per day (RB/day); b) fractional flow Fw (%).

a) b)
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Figure 10. Water saturation profiles for different simulation times using a 90x90 volume.

a)

c)

b)

d)

Figure 11. Seventh SPE project physical model.
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The small difference observed in Figures 12, 
may be due to implementations of the numerical 
method and conversion factor used for the STB; 
in the present work the STB conversion factor 
from Nghiem et al. (1991) was used. It should 
be noted that this problem was solved only with 
the grid size proposed by Nghiem et al. (1991), 
as it is indicated by this benchmark. The RMSD 
obtained in this problem is 55.77 for the oil 
production values and 68.08 for cumulative oil 
production. In order to know the behavior of the 
fluids flow in the layer where the production well 
is placed. Figure 13 shows the saturation profiles 
Sw in this layer for six selected simulation times 
by using the grid size proposed by Nghiem et 
al. (1991). For the saturation profiles belonging 
to 100 and 300 simulation days, it is noted that 
the water has begun to sweep the oil present 
in the layer forming a “water feather”. For the 
1,200 and 1,500 profiles the water feather has 
spread out to more than a half the domain. This 
means that about 40% of the oil present in the 
layer has already been produced.

Numerical performance experiments 

In order to analyze the performance of the 
numerical code, the five spot water injection 
problem was selected. Numerical parameters 
selected were:  ΔSw=1x10-05 for water saturation 
and Δpo=1x10-03 for oil pressure. Stop criterion 
for leaving the Newton-Rapshon loop was 
selected to: |δSw| <1x10-03 and a fixed time 
step of 0.01 day was chosen; results are saved 
every 1.0 day.  10 days were selected for the 
total simulation time.

Numerical results presented in this section 
were obtained by executing our numerical code 
in a workstation with a single processor Intel 
(R) i7 (R) CPU 3820 3.60 GHz, 16 Gigabytes of 
RAM and an NVIDIA Tesla C2075 (R) GPU with 
448 cuda-cores and 6 Gigabytes of dedicated 
memory.

Table 5 shows the average run-time for 
each Newton-Raphson step. The Jacobian run-

Table 4. Parameters to solve the Seventh SPE project (Nghiem et al., 1991).

	 Property	 Value

	 Size of domain (Lx x Ly x Lz)	 2,700 x 2,700 x160 (ft)
	 Absolute permeability (kx, ky, kz)	 (300.0, 300.0, 30.0) (mD)
	 Porosity (f)	 0.20
	 Water viscosity (mw)	 0.96 (cP)
	 Oil viscosity (mo)	 0.954 (cP)
	 Residual water saturation (Swr)	 0.22
	 Residual oil saturation (Sor)	 0.0
	 Injection pressure (pin

wb)	 3,651.4 (psi)
	 Production pressure (pout

wb)	 3,513.6 (psi)

Figure 12. Results obtained using 10X10X7 discrete volumes: a) Oil production (STB/day); b) Cumulative oil production 
(MSTB).

a) b)
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Figure 13. Water saturation profiles in the production layer for different simulation times.

a)

c)

e)

b)

d)

f)
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time increases considerably when the number 
of volumes is bigger. As an example, 0.796 s 
were spended when volumes were 550x550 
in CPU, while only 0.0379 s were used on the 
GPU that means 21x of speed up. This result 
is a considerable save of computation time 
taking into account that this procedure has to 
be repeated every Newton iteration.

Most authors indicate about 75% computation 
time is consumed in the solution of the system 
of linear equations. For solving the linear 
equations system, BICGSTAB solver without a 
preconditioner was used. This solver is already 
included in EIGEN and CUSP libraries (Jacob 
and Guennebaud, 2016; Maia and Dalton, 
2016). Run times are shown in Table 6. Results 
indicate that CPU is faster than GPU when linear 
system is small (45,000 unknowns). When the 
linear system increases from 45,000 to 125,000 
unknowns the computing time using the GPU 
is less than CPU. For a system with 605,000 
unknowns, the maximum speed up is achieved 
(2.207x).

In a numerical code developed with GPU 
without graphics in real time, numerical results 
always have to be transfered from GPU to CPU for 
later processing. This process is computationally 
expensive because it has to be carried out 
each time step or when the user requires it. 

The time measured for this operation was from 
1.69x10-05 to 0.101 seconds, for the 30x30 and 
550x550 number of volumes, respectively. For 
this reason real speed up must be quantified 
when the whole numerical code has finished. 
Figure 14 shows run time and speed up for 
executing the whole code. In this figure can be 
noted GPU is slower than CPU when the problem 
is executed with few volumes. In the other 
hand, GPU speed up increases if the number 
of nodes for executing the problem increases. 
For executing the numerical code with 302,500 
blocks (550x550 number of volumes) 3.0x of 
speed up is achieved, that is, the total run time 
for the CPU was 6.8 days whereas for the GPU 
it was only 2.26 days. It is worth mentioning 
that in this case the information transfer GPU-
CPU does not have a considerable effect, since 
it was executed only 10 times. It should be 
kept in mind that this is a benchmark problem, 
therefore it is not necessary to use a bigger grid 
size to solve it adequately.

Conclusions

Sequential and parallel implementations of a fully 
implicit simulator for waterflooding process have 
been presented. Both implementations were 
validated with three different benchmarks and  
similar results were obtained  in comparison with 
other authors and in comparison with analytical 

	 Number of volumes	 CPU run-time	 GPU run-time	 Speed up
		  (s)	 (s)	 (x)

	 30x30	 0.00284	 0.00084	 3.38x
	 90x90	 0.02340	 0.00164	 14.26x
	 150x150	 0.07141	 0.00311	 22.96x
	 250x250	 0.15049	 0.00754	 19.95x
	 550x550	 0.79686	 0.037937	 21.00x

Table 5. Average run-time obtained to compute the Jacobian.

Table 6. Average run-time obtained to solve the linear equations system.

	 Number of volumes	 Unknowns number	 CPU run-time	 GPU run-time	 Speed up
			   (s)	 (s)	 (x)

	 30x30	 1,800	 0.007599	 0.21234	 0.035x
	 90x90	 16,200	 0.19308	 0.85252	 0.226x
	 150x150	 45,000	 0.98792	 1.0727	 0.9209x
	 250x250	 125,000	 4.3418	 2.7515	 1.570x
	 550x550	 605,000	 29.408	 13.32	 2.207x
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solutions. The strategy of parallelization allows 
to reduce the calculation time of the Jacobian 
matrix, resulting from the Newton-Raphson 
method, using the architecture of the GPUs. 
Numerical results indicate that the GPU 
implementation reach until 22.9 times faster 
than the CPU counterpart for the finest mesh. 
On the other hand, the solution of the final 
linear system was also carried out in the GPU. 
A speed up of this step of 2.2 for the finest 
mesh was ontained. In total, taking into account 
the construction of the Jacobian matrix, the 
solution of the linear system and the exchange 
of information between CPU and GPU, gave a 
total speed up to 3. As expected, this speed up 
can be improved as the number of unknowns 
is incremented, however, the limited number of 
threads and memory of GPUs is a first obstacle 
to go forward. Even though the libraries used for 
solving the linear systems are optimized, they 
need to be improved with special preconditioners 
in order to obtain better results in terms of CPU 
and GPU time, and pair the 22x of speed up that 
was achieved in the present best calculation of  
Jacobian matrix. On the other hand, the GPU 
used in this work is not the newest one in the 
market, in such a way that a limitation occurs 
by the number of CUDA cores (448) and the 
memory (6GB) of the hardware; however, as can 
be seen, as the size of the problem increase, the 
speed up improves, therefore if, for example a 
GPU Tesla K40m (2880 CUDA cores and 12 GB in 
memory) is used better results can be expected. 
Finally, the present strategy can be used for 
several number of GPUs along with domain 
decomposition methods; this allows to increase 
even more the size of the problem (to several 
millions of unknowns) and as a consequence 
the speed up will be improved. Of course, this 

requires better solvers for the linear systems, 
for example geometric or algebraic multigrid 
methods.
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