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RESUMEN 
El Servicio Geologico de Canada llevo a cabo una evaluacion acuffera para estimar la sustentabilidad y Ia vulnerabilidad 

acuffera en St. Lawrence Lowlands a! suroeste de Quebec. El modelo DRASTIC y un SIG fueron us ados para calcular y producir 
los mapas de vulnerabilidad. Paralelarnente se realizo un detallado monitoreo del procesamiento de los datos para controlar Ia 
exactitud de los mapas de vulnerabilidad. Una estimacion global incluyo errores identificados e incertidumbres asociadas con 
datos espaciales y descriptivos usados en el modelo. Los datos analizados se relacionaron con los pozos, perforaciones, mapas 
tematicos, y tambien con los procesos multiples de los datos incluyendo a los errores e incertidumbre atribuidas a los c:ilculos de 
la conductibilidad hidr:iulica, las interpolaciones de los datos, las intersecciones de capas de los datos espaciales etc. Se propane 
un sistema de categorizacion usando el lenguaje UML, para categorizar datos espaciales con respecto a! grado y fuente de 
incertidumbre. Este trabajo presenta este sistema, un ejemplo de aplicacion en un area estudiada y una discusion sobre su utili dad 
en el control del procesamiento de datos. Tam bien muestra que Ia incertidumbre asociada con el procesamiento de datos espaciales 
y !a integracion de los datos a un sistema numerico puede ser muy significante; Ia principal ambigi.iedad ocurre cuando se limpian 
datos, se interpolan, se clasifican y se sobreponen. La caracterizacion de la incertidumbre en los procesos de los datos fue una 
valiosa fuente de informacion tan crucial como la misma calidad de los datos. Monitorear !a incertidumbre asociada con el 
procesarniento de datos espaciales es casi tan importante como el modelo mismo. Sin embargo, el monitoreo de la incertidumbre 
puede ser complejo y subjetivo y de hecho es rararnente efectuado sobre bases regulares principalmente porque requiere mucho 
mas esfuerzo comparado con simplemente correr el modelo. 

PALABRAS CLAVE: Monitoreo de incertidumbre, an:ilisis de vulnerabilidad, recursos subterraneos, SIG, DRASTIC. 

ABSTRACT 
An aquifer assessment was undertaken by the Geological Survey of Canada to estimate the sustainability and aquifer vulner­

ability in the St. Lawrence Lowlands of south western Quebec. The DRASTIC model and GIS was used to calculate and produce 
vulnerability maps. A detailed monitoring of data processing was performed to control the accuracy of the vulnerability maps. 
Overall estimates involved identifying errors and uncertainty associated with spatial and descriptive data used to run the model. 
The data analysed was related to wells, drillings, thematic maps, and also multiple processing data including errors and uncer­
tainty attributed to calculations of the hydraulic conductivity, data interpolations, intersections of spatial data layers, etc. A catego­
rization system using the Unified Modeling Language (UML) was proposed to categorize spatial data with respect to the degree 
and sources of possible uncertainties. This article presents the categorization system used, an example of an application for an 
study area and a discussion around its usefulness in controlling data processing (GIS and model integration). This work shows that 
uncertainty associated with spatial data processing and integrating data to a numerical system can be very significant, the main 
ambiguity occurring when cleaning data, interpolating, classifying and overlaying. Uncertainty characterization on the data pro­
cesses was a valuable source of information. Monitoring the uncertainty associated with spatial data processing is almost more 
important to assemble than the model itself. However uncertainty monitoring may be complex and subjective and in fact it is 
rarely done on a regular basis mainly because it requires much more efforts compare to simply running the model. 

KEY WORDS: Uncertainty monitoring, vulnerability analysis, groundwater resources, GIS, DRASTIC model. 

INTRODUCTION 

Close to 30% of Canadians depend on groundwater and 
this proportion is constantly rising. The increasing number 
of sources of pollution from environmental accidents and 
inadequate land-use practices such as excessive use offertil­
izers or chemical spills prove to be detrimental to ground-
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water resources. There is a negative impact on the quality of 
drinking water, and indirectly on human health, environment 
and the economy. Consequently, the Canadian government, 
through the Earth Sciences Sector-Groundwater Program, has 
clearly identified sustainability and vulnerability of ground­
water as a major issue (ESS, 2002): 
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" ... the Canadian Framework for Collaboration 
in Groundwater, includes the development of 
a Canadian inventory of groundwater resources 
and assessing regional aquifer dynamics (re­
charge and discharge, estimation of sustain­
able yield and quantification of vulnerability)." 

Groundwater protection begins with the assessment of 
the sensitivity of its environment. Various techniques and 
methodologies have been developed to evaluate environ­
mental impacts associated with groundwater pollution, 
among which, the concept of aquifer vulnerability. This con­
cept has existed since the 1960's; yet, there is no standard 
definition of aquifer vulnerability. The most common defi­
nition follows Vrba and Zaporozec (1994), who describe 
aquifer vulnerability as a concept representing the intrinsic 
properties of aquifer systems as a function of their sensitiv­
ity to human and natural activities. Vulnerability mapping 
is defined as a technique for quantifying the sensitivity of 
the resource to its environment, and as a practical visualiza­
tion tool for decision-making. Maps are produced from a 
set of decisional criteria linked to a number of physical pa­
rameters representing the study site; the choice depends on 
the model used. Vulnerability maps can be calculated with 
the aid of a geographical information system (GIS). GIS's 
allows spatial data gathering and, at the same time, gives a 
mean for data processing, such as geo-referencing, integra­
tion, aggregation or spatial analysis (Burrough and 
McDonnell, 1998). 

When estimating map accuracy, the quality of the 
model used to· calculate groundwater vulnerability is cer­
tainly a criterion to take into account. However, accuracy 
evaluation of these models can be difficult. A model's de­
gree of complexity is certainly one of the difficulties that 
users face and the variety of possible model input data tends 
to complicate the estimation of result accuracy and the as­
sessment of quality control. It is therefore essential to at­
tempt identifying and quantifying errors and their propaga­
tion through the various processes in generating vulnerabil­
ity maps. Quantifying the propagation of errors could be 
much more time consuming than implementing the model 
and producing a specific groundwater vulnerability map. 
This paper introduces a framework used to evaluate the na­
ture of uncertainty found in data processing involved in the 
coupling of a GIS and a model (DRASTIC). The objective 
of this work was to control spatial and descriptive data ma­
nipulated by several scientists involved in the assessment 
of groundwater vulnerability when using a monitoring sys­
tem based on the categorization of data processing and Uni­
fied Modeling Language (UML). We present an application 
of this uncertainty monitoring system to a specific study 
site (St. Laurence Lowlands), and we develop a discussion 
about its usefulness and restrictions in controlling data pro­
cessing. 
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ERROR OR UNCERTAINTY ASSESSMENT 

The validation of data processing during data integra­
tion required certain controlling steps. Data control could be 
achieved through various forms of validation (e.g. in com­
paring with standards) or it could also be performed in evalu­
ating error propagation through data processing steps. In 
mathematics and physics, error is defined as the difference 
between an observed or calculated value and a true value. 
Literature review shows that error characterization could be 
done in identifying four main sources of possible errors 
(Heuvelink, 1998; Fisher et al., 2002; Lanter and Veregin, 
1992): 

1. Conceptual errors: These errors arise from semantic (mean­
ing) and descriptive differences between a specific refer­
ence model and the reality. 

2. Errors of measurement: This category includes errors in­
herent to the instruments of measurement. It specifically 
relates to the accuracy and calibration of the instrument. 

3. Storage media errors: This type of errors relates to pos­
sible degradation (e.g.) of media used to store and distrib­
ute data (e.g. influence of humidity or temperature on pa­
pers, film, CD). 

4. Data processing errors: These errors refer to data handling 
and integration such as format conversion, structure of 
data storage (raster/vector), geometric and positioning 
system transformation, spatial analysis (buffering, over­
laying), querying, updating, etc. 

Errors could be randomly or systematically distributed 
on either spatial data (e.g. position), descriptive data (e.g. 
soil texture) or temporal data (e.g. date). The technique of 
combining two or more random errors to a third is an error 
propagation technique. In the case of quantitative data, the 
estimation of errors is addressed by mathematical models, 
which can take into account analytical, stochastic or statisti­
cal aspects of the studied variables. Analytical models are 
aiming at estimating the contribution of each input param­
eter by evaluating them with a deterministic function 
(Heuvelink, 1998). Most of the analytical techniques for er­
ror distribution are based on the First-Order Taylor expan­
sion and on a standard deviation estimation of each input 
data (Bevington and Robinson, 1992). Stochastic models such 
as Monte Carlo simulations estimate errors from a random 
sample repeatedly extracted from a distribution function 
(Lewis and Orav, 1989). This allows the generation of many 
versions of possible results from which data uncertainty may 
be estimated. Geostatistical models, even if they are not in 
reality error propagation models, could also be of interest as 



they are used to identify input errors, especially in the con­
text of interpolation calculations. Geostatistical techniques 
make use of the spatial structure present in the data to tackle 
the problem of estimating values at unsampled locations 
(kriging algorithms) (Isaaks and Srivastava, 1989; 
Goovaerts, 1997). 

These error models deal mainly with error propaga­
tion of quantitative attributes through algorithm calculations 
(analytical, stochastic). However, in the context of vulner­
ability assessment, parameter determination may not fulfil 
this condition and error quantification may not be reliable 
(e.g. estimation of aquifer media). Furthermore, in the con­
text of data control, error is not necessarily the only one 
source of information. Uncertainty analysis is often related 
to error analysis (Crosetto and Tarantola, 2001). Uncertainty 
could be defined as the character of what cannot be deter­
mined, or be known in advance. From this definition, it could 
appear strange to estimate uncertainty. However, in using 
the term 'uncertainty' instead of 'error', the terminology al~ 
lows us to increase error characterization in introducing con­
cepts such as completeness, lineage and consistency, all as­
sociated with data quality control (Guptill and Morrison 
1995). Quality, in our context, refers to the fitness of data 
used to fulfill the requirements of the groundwater vulner­
ability model applied. The difference between uncertainty 
and error is well recognized in literature even if the defini­
tion of uncertainty is not well defined and could include 
concepts such as vagueness, ambiguity and probability 
(Plewe, 2002). We will use the term 'uncertainty' in a broad 
sense when uncontrollable events emphasize doubt in the 
data quality, and 'error' terminology when mistake are iden­
tifiable or quantifiable (for example with the aid of an ana­
lytical propagation model). 

PROPOSAL FOR A MONITORING UNCERTAINTY 
FRAMEWORK 

We performed the characterization of uncertainty as­
sociated with data processing by formalizing the descrip­
tion of every data manipulation and by translating each data 
manipulation previously described in a computable scale of 
measurement for error estimation. It should be noted that in 
our context of data processing control, we only have fo­
cused on the fourth previously proposed category of error, 
i.e. data processing errors. Other sources of uncertainty such 
as conceptual errors or errors of measurement should be 
taken into account if higher levels of uncertainty analysis 
are done. 

To first clearly identify data processing and then clas­
sify any associated uncertainty, we used an activity diagram 
pres,enting data flows to generate a specific parameter. The 
language used to build activity diagrams is based on Uni-

Aquifer vulnerability mapping and GIS 

fied Modeling Language (Rumbaugh et al., 1999). Unified 
Modeling Language (UML) is a reach language mainly used 
in the context of software and database design. Activity dia­
grams, one of the various views ofUML, represent activities 
that transform data from one form to another, with a formal­
ized step-by-step fashion. In fact, UML activity diagrams 
are the object-oriented equivalent of data flow diagrams 
(DFDs). For example, UML formalism will present, Flows 
like lines with arrows, Forks like a splitting of a flow (begin­
ning of parallel activities) and they are denoted with a black 
bar where one flow is entering a point and several are exit­
ing the same point, Joins represent a synchronization of two 
or more flows (ending of parallel processing) and they are 
denoted with a black bar with several flows entering it and 
one exiting it, Decision points are represented with a dia­
mond where one flow is entering and several are exiting. A 
merge is a diamond with several flows entering and one ex­
iting and they are associated with Guard conditions, which 
evaluated to true in order to traverse the decision point, are 
represented as [text] on a flow. 

In the context of characterization of uncertainty, some 
adjustments to UML level were made. Symbols were added 
to facilitate understanding of activity flows, in order to bet­
ter differentiate between spatial and descriptive data, the type 
of geometry used to store the spatial data (point, line, poly­
gon or raster structure), and the category of data handling. 
Indicating the type of geometry is very significant because it 
governs the nature and relative importance of processing 
applied to the spatial data in order to transform the data into 
useful information (specific to the structure of the model). 
Indicating the nature of data handling represents an impor­
tant issue in our work because it gives us a means to under­
stand the cause of uncertainty and later identify associated 
errors and corrections. 

We have identified three categories of data processing 
(data handling, data modification and data transformation) 
and we will summarize the degree and sources of uncertainty 
associated with GIS-model coupling. Data handling relates 
to the outlining and assembling required for making conver­
sions of the data format that do not change the content of the 
data set. We assume that limited or irrelevant errors, or de­
grees of uncertainty, are associated with this kind of data 
processing. Data modification implies adapting and trans­
ferring data from one known system to another known sys­
tem. Examples include changing the reference system of 
coordinates, applying rotation or translation, converting from 
raster to vector without interpolating or data cleaning. Data 
modifications modify the content without necessarily creat­
ing new knowledge. We placed our analysis in this category 
selection of subset data, since the selected example will have 
a direct influence on further calculations. The degree of un­
certainty associated with data manipulations will first de­
pend on the assumptions and the mathematical model used 
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to modify data (e.g. deterministic or not, proven or not, re­
versible or not, etc ... ). It will also depend on data complete­
ness and data coherence when various sources of data are 
used. Quantification of possible errors associated with data 
modification could be relatively easy to determine if the as­
sumptions and the mathematical model used to modify data 
content are known. If not, one could estimate the error by 
running the model several times and controlling one or sev­
eral variables, as is the case with Monte Carlo simulations. 
Without this, error quantification could be very difficult to 
perform and in that case one could only qualify the possible 
errors associated to these kinds of data processing. Finally, 
data transformation represents a different level of abstrac­
tion than data handling or data modification because new 
knowledge is created and the semantic content is changed 
with respect to the model. Examples of data transformation 
are slope derivation, interpolation, conversion from raster to 
vector involving interpolation, buffer calculation, data over­
lay or human interpretation. Data transformations attempt to 
discover, derive, and even predict new knowledge from the 
system. The degree of uncertainty associated with data trans­
formations will also depend on the assumptions and the math­
ematical model used to modify data, but it will also be re­
lated to semantic and descriptive accuracy of the new sys­
tem of classification. This kind of uncertainty evaluation is 
more subjective and will depend on agreement between the 
ontologies ofthe original and the output data. Error quantifi­
cation, in the context of data transformations, is possible if 
the assumptions and the mathematical model used are known. 
If they are not, one could apply the same protocol used in 
error evaluation for data modifications. 

APPLICATION OF THE UNCERTAINTY MONI­
TORING FRAMEWORK 

The uncertainty monitoring framework was applied to 
data processing involved in the mapping of groundwater vul­
nerability with the DRASTIC model. This model was cho­
sen, by the Geological Survey of Canada, as it is one of the 
most widely used models to map the vulnerability of ground­
water (Lynch, 1994, Rosen, 1994). DRASTIC is an empiri­
cal model based on the assessment of seven parameters (Aller 
et al., 1987): depth to groundwater (D), recharge (R), aqui­
fer medium (A), soil type (S), topography (T), impact of va­
dose zone (I), and hydraulic conductivity (C). For each pa­
rameter, the possible range of values is subdivided in numer­
ous intervals, and an index of vulnerability is calculated by 
adding the indices of all 7 parameters weighted according to 
its importance for vulnerability evaluation, using the follow­
ing equation: 

where: /DRAsTic is a vulnerability index, wand r indicate the 
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weight and the interval value given to each parameter, re­
spectively. 

Vulnerability indices were calculated with the aid of a 
GIS. The computation of the vulnerability index represents 
a vertical integration. Each parameter corresponding to a data 
layer is computed for a specific pixel structure, following a 
summation of all seven parameters. Consequently, the vul­
nerability index does not take into account possible spatial 
associations between parameters, which could be perceived 
as a limit of the DRASTIC model. 

We do not pretend to make a thorough evaluation of 
the appropriateness of the DRASTIC model for estimating 
aquifer vulnerability. In fact, various authors have highlighted 
the drawbacks and benefits inherent to the DRASTIC model 
(Bengtsson and Rosen, 1995; Kalinski et al., 1994; Navulur 
et al., 1996). This study on error characterization could be 
performed on any other groundwater vulnerability assess­
ment model. One example of application is presented be­
low. 

An aquifer vulnerability evaluation was carried out for 
a fractured aquifer system of the St. Lawrence Lowlands of 
south-western Quebec covering about 1500 km2 (Murat et 
al., 2002; Figure 1). Most of the population in this region 
relies on groundwater as a source of drinking water. A 
hydrogeological and hydrogeochemical characterization of 
the area was performed (Nastev et al., 2001 and Bourque et 
al., 200 1). Table 1 shows spatial and descriptive data and 
their associated sources used to assess the aquifer vulner­
ability in that region. Assessment of the aquifer vulnerabil­
ity using DRASTIC in combination with a GIS, was suc­
cessfully applied to the St. Lawrence Lowlands groundwa­
ter system. We use this study to illustrate the use of our pro­
posal. The construction of the geographic database involved 
many people, several sets of measurements, various steps of 
interpretation, manipulation and transformation. 

GIS capabilities for data collecting and transfer allowed 
fast and easy data recuperation from existing heterogeneous 
files. However, reliability between these heterogeneous files 
was much more difficult to ensure and coupling of GIS-model 
created new sources of uncertainty. Thus, a complete descrip­
tion of each manipulation was performed on the work done 
by Murat et al. (2002). The formalization of data processing 
helped us understand and monitor important processes that 
should be considered in controlling accuracy estimation of 
the output vulnerability map. To show the application of the 
uncertainty monitoring framework, we will present a detailed 
description of two parameters used in the DRASTIC model: 
hydraulic conductivity, k, and aquifer media estimation. We 
estimate that each of the selected parameters correspond to 
representative types of data and processes. k represents quan-
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Fig. 1. Location of the study site. 

titative data (e.g. rn/s), whereas aquifer media represents 
nominal data (e.g. geological formations as shale, sandstone, 
metamorphic rock). 

Formalization of data processin2: required to compute hy­
draulic conductivity 

The formalization of data processing required estimat­
ing DRASTIC parameters- k is illustrated with the diagram 
of activities presented on Figure 2. The following sections 
discuss the interpretation of this diagram and subsequent con­
trols and adjustments made to the study of Murat et al. (2002). 
These adjustments result directly from the formalization of 
uncertainty and error classification associated to each pro­
cess. 

a) Data gathering 

Data gathering involves collecting and assembling data sets 
required for parameter estimation. It consists in obtaining 
and converting databases in specific numerical formats. Re­
trieving databases and files and converting formats is classi­
fied as data handling because it was assumed that possible 
associated errors would be negligible. Because information 
on wells and boreholes was not originally obtained for vul­
nerability analysis, appropriate values had to be selected (e.g. 
clipping data and selection of values representing rock aqui­
fer). This process of selecting appropriate values was classi­
fied as data modification since it can imply simplification, 
which in turn would have a direct impact on the output prod­
uct. 

b) Data preprocessing 

Data pre-processing involves cleaning and coupling data in 
order to adequately calculate the hydraulic conductivity. For 
k estimations, data quality control is of major concern. Evalu­
ating data quality in itself does not constitute a data transfor­
mation, but making choices in eliminating defective values 
produces significant data modifications. 

Data quality was evaluated by comparing depth to wa­
ter and X,Y coordinate information with other sources (from 
another similar analysis). Data quality was also done by auto 
comparing values within the databases (e.g. in eliminating 
extreme values). In fact, nine criteria to eliminate defective 
values were used. These included: a non-indicated pumping 
duration, a diameter of well that was too small, an insuffi­
cient pumping rate. Validating data involved an iterative pro­
cess between point data and interpolated surfaces (cross-vali­
dation). From the 2750 original number of points, we ended 
up with 179 points (which represents 7% of original data). 
This number does not represent a large number of points for 
a territory of 1500 km2 . 

The uncertainty monitoring of data pre-processing has 
showed that various data used as input to the DRASTIC 
model was individually evaluated and thus controlled. The 
data was especially controlled in cases following acquisition 
steps and for specific purposes. For example, depth-to-water 
data was controlled with criteria such as date of pumping or 
topography to prepare an acceptable piezometric map. It was 
found that the data was adequate enough to obtain an esti­
mation of depth-to-water DRASTIC parameter. 
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Table 1 

List of information and data sources to run DRASTIC model 

Data type 

Point data (wells, drills) 

Soil map 

Geologic map 

Information on data 

water level 
stratigraphic data 

topography 
hydraulic property 

soil formation 
scale: 1/50 000 

geological formation 
scale: 1/50 000 

Data sources 

Ministere des Transports du Quebec 
Systeme d'Information Hydrogeologique 
Ministere de l'environnement du Quebec 

Private consulting firm 
Geological Survey of Canada 

Institut de Recherche et Developpement en 
Agro-environnement 

Geomatic Canada and Geological Survey of Canada 

Superficial formations superficial formation (quaternary) 
scale: 1/50 000 

Geological Survey of Canada 

DEM (Data Elevation Model) 

c) Parameter computation 

pixel: 30X30 
scale: 1/50 000 

Parameter computation represents data processing as­
sociated with calculating the hydraulic conductivity and gen­
erating raster surfaces as required by the DRASTIC model. 
Finally, parameter computation represents the classification 
of k units in the units of the DRASTIC index. Analytical 
equations are used to calculate k. The choice of these equa­
tions depends in part on the nature of the measured data. 
These data came from slug, pumping or packer· tests. Ap­
plying formulas to calculate k was classified as data trans­
formation since it creates new information. We used an av­
erage value for packer tests, and transmissivity and perme­
ability information to calculate new k values. There were 
no errors detected in applying formulas (we were not evalu­
ating the adequacy of these equations). However using in­
formation coming from the various pumping tests could 
cause important variations in the calculations of k. For ex­
ample, slug tests measure a prompt phenomenon around 
one meter while pumping tests involve a more important 
radius of influence - in the range of hundreds of meters. 
Therefore these two different tests each have a specific goal. 
Because of their high costs, pumping tests can not be ac­
complished systematically on a regional scale and will of­
ten be achieved in more permeable zones. This implies that 
regional surveys on hydraulic properties are always biased 
in the same way: weaker in permeable zones and stronger 
elsewhere, thus interpolation is also indirectly biased. To 
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quantify this bias, slug tests should have been done each time 
a pumping test was realized (this was not the case). Conse­
quently, handling these two different types of information in 
the same way (e.g. for subsequent data interpolation) gener­
ates errors. 

Data interpolation creates new information and was 
classified as data transformation. Data interpolation is a com­
plex operation where one has to first consider the choice of 
the interpolator and secondly to chose the pixel size. The 
interpolator used for the previous study was the kriging in­
terpolator because it offers various analytical tools. How­
ever, after having tested several kriging models, we concluded 
that a kriging interpolator should not be used in our case 
study. In fact, data must have a normal behaviour and the 
observed correlation must be greater than 30% for the dataset. 
The analysis of the semi-variogram and kriging calculations 
associated with k interpolation illustrate considerable nug­
get effects, a correlation factor of less than 30% and an in­
significant cross validation test. Therefore, either the spatial 
variability of data is not captured, or there is not enough cor­
relation in the data (interpolation not feasible). 

As previously declared, only 7% of the original data 
logs used to calculate k (179 out of 2750) satisfied 
hydrogeological controls. The number of points required to 
capture the spatial variability is related to the heterogeneity 
of the medium being studied and the precision required (also 
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related to the scale of analysis). This means that the density 
and the distribution of points must represent, as much as 
possible, the complexity of the zones, which is relatively 
difficult to achieve. For example, Figure 3 shows two 
variograms and surfaces calculated from 258 slug tests (Fig­
ure 3A) and a subset of 53 slug tests (Figure 3B). We clearly 
see that the results are undeniably different in terms of in­
terpolation and spatial dependence (variograms). The only 
information we have to evaluate for quality of the interpo­
lation is the standard deviation, which is independent of the 
initial spatial variability. 

After having interpolated data, depending on the in­
terpolators, we have identified the pixel size. Hydraulic con­
ductivity was calculated from pumping tests and slug tests 
which have a different radius of influence around a well 
and therefore induce direct effects on the meaning of the 
estimated values. This means that the pixel size should be 
greater than the influence radius of the pumping tests. For 
example, if the radius is 300 m, the pixel must be around 
300m or larger. In our case, we have estimated that noma­
jor uncertainties result from this data processing and we 
classify the task "converting vector to raster" as simple data 
handling. 

Finally the last data processing method involves the 
assignment of DRASTIC classes to each value of k. Again, 
the assignment of DRASTIC classes was categorized as a 
data transformation because it creates new information. In 
addition, this classification causes major generalizations of 
k values and is therefore an inherent loss of information. 
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After all, a lot of causes of uncertainty were qualified 
and some errors were quantified as we formalized data pro­
cessing required to estimate k. We ended up with seven data 
handlings, two data manipulations and three data transfor­
mations. We quantified errors associated with data interpo­
lation. Some sources of errors were determined with this 
activity diagram and we were able to recomputed new val­
ues for the DRASTIC k parameter. For example, Figure 4 
shows (A) the k map (such as calculated by Murat et al., 
2002) and (B) the k map after the corrections were made 
from our uncertainty monitoring. We can see major differ­
ences between these maps. The indices are good. 

Formalization of data processing required to compute aqui­
fer media 

The second DRASTIC parameter presented here is the 
aquifer medium estimation. Figure 5 illustrates the formal­
ization of data processing associated to aquifer medium es­
timation and the following section discusses the interpreta­
tion of this diagram. 

a) Data gathering 

Data gathering involves collecting various sets of data 
required to be able to define the aquifer medium. We no­
ticed several heterogeneous sources of information such as 
stratigraphic data, superficial formation map and geologi­
cal map. All these processes do not transform or modify 
data and were therefore classified as data handling. 
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Fig. 3. Impact of the density of points on the study site, using 258 points (A) reduced to 53 points (B). 
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Fig. 4. Maps representing hydraulic conductivity DRASTIC parameter before and after conection of enors. 

b) Data preprocessing 

Data preprocessing involves data integration steps re­
quired to aquifer medium. We first merged stratigraphic point 
data with the superficial formations map. We classify this 
data processing as data modification because it requires some 
interpretation and data selection, which have some impacts 
on the output product. 

From this information, we integrate and convert 
stratigrahic and superficial information in order to identify 
aquifer characteristics useful for DRASTIC's class assign­
ment. This data processing was then classified as data trans­
formation since it creates new information. Polygon delimi­
tation of the new superficial formations map was based on 
the interpretation of confined, semi-confined and unconfined 
conditions of the aquifer. Errors for this data processing 
mainly relates to the corrected delimitation of confined and 
unconfined polygons. These errors are mainly due to the 
quantity of information used (density of the stratigraphic data 
points) and the quality of information used (map and de-

scriptive precision, spatial distribution of data points), which 
are easy to qualify but difficult to quantify. In fact, strati­
graphic data were well evaluated and controlled for another 
specific purpose (e.g. location, thickness of formations, com­
parison of each punctual data to others, etc ... ), but they were 
not totally appropriate for evaluating the accuracy and pre­
cision of the delimitation of confined and unconfined poly­
gons. 

The last data processing method required in data pre­
processing is to overlay the new superficial formations map 
(confined and unconfined zones) with the geological map. 
This map superposition allows modifying the superficial for­
mation maps by incorporating information about the mate­
rial that constitutes the aquifer and the degree of confine­
ment of this aquifer. Thus, map overlay was classified as 
data modification because it does not create new informa­
tion but creates an added product from which DRASTIC 
would be assigned. Aggregation and data cleaning associ­
ated to map overlaying introduces major sources of uncer­
tainty on the resulting output data, however we were not able 

559 



V. Murat et al. 

to quantify their amplitude as it is based on individual and 
local opinions. 

c) Parameter computation 

This group of data processing help compute aquifer 
medium DRASTIC classes. We first place the information 
on a scale that could be used to match with DRASTIC 
classes. To do this classification, we matched aquifer iden­
tification of the previous map with the classification system 
associated to DRASTIC classes (from Aller et al., 1987). 
This assignment was categorized as data transformation 
because it creates new information based on human inter­
pretation. Similar to the hydraulic conductivity parameter, 
the assignment of DRASTIC classes causes a generaliza­
tion and therefore an inherent loss of information. 

To evaluate the impact of human intervention on clas­
sification result, a comparative analysis was performed. The 
comparative analysis consists in asking six specialists (two 
hydrogeologists and four geologists) working on the previ­
ous project to create a classification map from the surface 
formation map and key interpretations of DRASTIC classes. 
The results were analyzed according to the statistical test of 
Kappa, which can be interpreted as the agreement propor­
tion between observers attributable to the capacity to repro­
duce DRASTIC classifications (Bernard, 1993). For the 
study area, the agreement proportion is weak between all 
the specialists but it is good for people from the same disci­
pline (Figure 6). The maps made by hydro geologists show a 
good association proportion as illustrated on Figure 6 (C 
and D). The same comment can be stated for the maps pre­
pared by geologists (Figure 6 A, B, E and F). As expected, 
for hydrogeologists, the classification offormations is more 
homogeneous than for geologists. This is probably because 
hydrogeologists interpret formations in terms of potential 
reservoir, whereas geologists give more weight to forma­
tion characteristics. This difference of perception might have 
a significant impact on the final product and should be ac­
counted for in uncertainty evaluation. Still, it is difficult to 
estimate the impacts without this comparative analysis. 

Finally, conversion of vector format to raster format 
does not modify the content of the data as no interpolation 
is made on the spatial data. We thus classify this processing 
as data handling. The overall classification of data process­
ing involved in the estimation of aquifer medium can report 
five data handlings, two data manipulations and two data 
transformations. 

Overall comparison of uncertainty monitoring 

If we compare the uncertainty monitoring of hydrau­
lic conductivity and aquifer media we reach some interest-
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ing statements. The former required more data processing 
steps but most of the hydraulic conductivity data is consid­
ered data handlings which has minor impacts on the degree 
of uncertainty of the output product. However we faced an 
unexpected problem in operations of data transfer. Indeed, a 
series of file transfers (necessary to select values) of the hy­
draulic conductivity dataset from a spreadsheet format to 
the GIS format induced data indexation errors. That is due 
to the fact that a geographical index was not reinitialized at 
each data import operation. The associated degree of uncer­
tainty of data handling should then be re-evaluated when 
simple conversions of data formats are required. 

Still, in the uncertainty monitoring of hydraulic con­
ductivity, several data transformations were made and error 
quantification was possible to compute because hydraulic 
conductivity values are mainly represented on a quantita­
tive scale of measurement. Data cleaning was a binding step 
where many data points were eliminated to satisfy coher­
ence standard. The data interpolation used for generating 
continued information such as required by DRASTIC, also 
represents an important data processing method to control 
and validate. The choice associated with the interpolator rep­
resents a driven factor (e.g. geometric constraint conditions, 
fitted exactly or not to control points, amount of points and 
their distribution). 

Data pre-processing tasks associated with aquifer me­
dium uses several data processes and represents many 
sources of uncertainty. However, it was really difficult to 
quantify its magnitude. The classification of aquifer medium 
was especially subjective. Several hypotheses were made in 
the process of data merging, and their impact on the final 
product is obvious but still complex to monitor. Human in­
terpretation was an important factor on aquifer medium es­
timation. 

If we extended our discussion to other parameters, with­
out presenting each activity diagram, we could mention that 
each DRASTIC parameter requires data processing such as 
"get database and file", "convert format" and "assign DRAS­
TIC classes". Aquifer medium and impact of the vadose zone 
parameters must select appropriate values, which is a com­
plex step and could imply many uncertainties. Depth-to-wa­
ter table, recharge and topography parameters involve "in­
terpolate to get continuous information" which represents 
data processing containing possible uncertainties. 

CONCLUSION 

The main objective of this work was to control and 
validate previous study on groundwater vulnerability analysis 
involving GIS and model coupling (DRASTIC model). The 
initial plan was to perform error analysis quantification and 
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then make adjustments to data and processes involved. We 
began by trying to apply a mathematical model of error 
propagation to each parameter. We faced many problems 
and lost time trying to quantify propagation errors com­
pared to efforts spent on running the DRASTIC model (it is 
relatively simple to produce a specific map of groundwater 
vulnerability). To be efficient (i.e. produce information very 
helpful in the procedures of data processing control), we 
ended up with a solution framework, whereby a system of 
classification of spatial data processing is associated with a 
degree of uncertainty. These data processing classes are rep­
resented on a UML diagram of activities where we can iden­
tify three classes of data processing (handing, manipula-

tion and transformation); each associated to possible sources 
of uncertainty. Theses diagrams help managers point out 
sources of uncertainty and ultimately correct them. We ap­
plied this method to a real case. 

We admit that the uncertainty monitoring framework 
proposed here is not complex and/or revolutionary. How­
ever, our framework application to a regional-scale case 
study helped in the management and control of data ma­
nipulation when several researchers with different back­
grounds and data processes are involved. The study of un­
certainty monitoring on the evaluation of vulnerability in 
south-western Quebec not only provided a better understand-

Fig. 6. Classification of the DRASTIC index of aquifer medium according to six specialists. 
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ing of the errors and a better grasp on spatial data process­
ing, but it also brought new insight to the unfolding of the 
evaluation processes. It raised important questions related 
to data acquisition procedures and controls. Should we use 
more sample points when generating continuous surfaces 
even if they do not satisfy hydrogeological controls? Should 
we have various data processing controls depending on the 
issues? On the scale? Do we know the limits of data pro­
cessing control in the context of decision-making?. Uncer­
tainty analysis answers only part of these questions. It is 
clear that uncertainty is dependant on spatial variability, 
density of observations, data processing and mapping pro­
cedures. Sensitivity analysis, which studies the relationship 
between variations in the input model parameters with model 
responses, would also be a valuable approach (Crosetto and 
Tarantola, 2001). Moreover, sensitivity analysis allows to 
take into account both quantitative and qualitative attributes; 
this was not the case in the quantification of errors. 

GIS has become essential to any regional-scale 
hydrogeological project. It allows spatial data integration 
and spatial analysis, which is supposed to improve the qual­
ity of estimates. Nevertheless, new problems may appear 
when using GIS, such as misinterpretation of interpolated 
data or over generalization of complex geometrical data. In 
fact, the easiness of data manipulation tools available in GIS 
and the lack of specific monitoring strategy of spatial data 
processing could lead to a non worthy final product (vul­
nerability maps). With recent developments of GIS 
functionalities, unaware users could accidentally modify the 
reliability of data. Some data handling, such as format con­
version seems to be less affected by error induction because 
no direct manipulations are made on either geometric or de­
scriptive attributes. However, users have to safely manipu­
late and verify the rigor of any software. For example, GIS 
softwares could use different resolutions to store coordinates 
(e.g. ESRI ArcGIS can store up to 15 significant digits per 
coordinate while Maplnfo used 32 bit integers). A simple 
conversion between software formats could create round off 
of significant digit numbers and precision. Also, algorithms 
may work under different assumptions and use different ap­
proximations, which may achieve various levels of accu­
racy. For example, depending on the software, the calcula­
tion of slope could be evaluated from the arithmetic aver­
age slope of the eight individual slopes or from the maxi­
mum slope. This difference could cause major variations in 
the estimation of the slope parameter driven by the model. 
Another example found in our case study shows heteroge­
neous surface interpolation results compared for various 
softwares with the same interpolator. Meticulous GIS users 
should be aware of these possible differences. 

The number of parameters used in the modelling of 
groundwater vulnerability should be taken into account when 
estimating the uncertainty output. More importantly, how-
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ever, is the formalization of the chain of processes used to 
fulfill the requirements of parameter establishment. Uncer­
tainties in the final product are much higher than the sum of 
individual errors associated to each data. Data processing 
involved several sources of uncertainty not always quantifi­
able. Data processing formalization should be extended to 
the documentation of metadata, quality assessment and data 
reliability. Hopefully, our study will make users of GIS and 
modelling methods aware of the difficulties related to pro­
cessing spatial data and especially to the integration of se­
mantic concepts. 
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