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TH/<; ENHANCEJ) NODAL f;QUILIBRIUM OCEAN TIDE AND 
POLAR MOTION 

RESllMEN 

B. V. St\NCH EZ*· 
(RPrrfrr,d Feb. 24, 1980) 

El analisis de• los datos rc,c:irntrs dcl movimicnto polar sriialan la presencia de un componen
tc cuya pl'riodiridad sc rorr,·s11onde con cl movimicnlo lunar asrcndente. Sc ha proo:sado una 
invcstigarion sohre• la respuesta tidal dd occano a las f1uerzas impdemtcs durantc largos pcrio
dos. Los rcsultados de esta invest igaeion sciialan la posihilidad dr exilaciim de un componc:nte 
ondulatorio ode "cahe•ei:o" con la amplitud y frccucncia coinridenlcs con losdatos registrados. 
~ ha poslulado, asi, una funcion de facilitaciim dcl equilihrio, bajo la forma cir una rxpansiim 
en las armonias :,,0nafos y los cocficientcs de did1a Pxpansiim parec,·n llrnar las condicioncs de 
componcntes dd movimicnto polar de la magnitud rcq11t:rida. 

ABSTRACT 

R,,,~:nt data analysis of polar motion indicates the pn:scnc:c: of a component with Jwriodicity 
corrc:spondi~ to the motion of the lunar asc:c:nding node. An invrstigation of the tidal rrspon:-;e 
of the ocean to long period forcing functions has been c:onductcd. The re-suits of I lw invcsligation 
indicate the possibility of excitation of a wobble component with thc· amplitude· and frecuency 
indicatt,d hy the data. An enha1111:mc,nt function for the c1111ilibrium tide has been J10slulated jn 
the form of an expan~on in ~Ama! harmonics and the r.ocffif"icnls of such an expansion have 
hecn estimated so as lo obtain polar motion c:omponents of the n:quired magnitude. 

* C,•od.vnami"• Brand, NASA/Cnddard Spa,i, f'liglit (:1"11tP.r (:m,•11bdt, Maryland 20771. 
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INTRODUCTION 

Recent data analysis by Markowitz (1979) indicate the existence of a 
wobble component with periodicity and phase corresponding to the 
motion of the lunar ascending node. 

The objective of this investigation is to ascertain the possibility of 
the existence of a 18.6 year wobble component due to a modified equi
librium ocean tide. The study of the equilibrium response of the oceans 
dates back to Darwin (1886). More recently Proudman (1960) reached 
the conclusion that the tidal constituent with nodal period will follow 
the equilibrium law while the semiannual and annual constituents will 
probably follow it. 

Wunsch (1967) tested the equilibrium hypothesis by computing 
periodograms for the fortnightly and monthly tides on islands of the 
Pacific which he found to deviate significantly from equilibrium. He 
considers the nodal tide to tend towards equilibrium with a certain 
degree of admissible uncertainty. 

The ocean responds not only to the gravitational potential of the 
Moon and the Sun, but also to the second degree potential of the Earth 
rotation. The "pole tide" or ocean response to the Chandler wobble has 
been analyzed by various investigators. Haubrich and Munk (1959) 
analyzed mean mortthly values of sea level from 11 tide stations and 
found the average pole tide with period of 14 months to have an amplitude 
twice that predicted by equilibrium theory. 

Hosoyama, et al. (1976) found the amplitude ratios of the observed 
to equilibrium pole tides to increase at high and low latitudes in the 
northern hemisphere; they also find latitude dependent phase delays 
and advances with implications concerning the possible excitement of 
the Chandler wobble.Naito (1977, 1979) computed the secular variations 
of the amplitude and phase of the observed pole tide for the period 
1900-1964 and compared them with those of the equilibrium pole tide, 
he found the largest amplitudes of the observed pole tide to take place 
in the coasts of the Baltic and North Seas, he concludes that the observed 
pole tides seem to have a certain relation with the equilibrium tides, but 
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to have their own secular variations. Dickman (1979) studied the effects 
of the pole tide on the Chandler wobble assuming pole tide amplitudes 
up to 10 time equilibrium both for the case of global enhancement and 
for regional enhancements in the North and Baltic seas. Dahlen (1976) 
devdoped a general theory to determine the influence of the pole tide 
upon rotation of the Earth. 

The concept of an enhancement function which modifies the equi
librium tide can be applied also to the ocean response to the gravitational 
disturbing forces. Such an enhancement function can be expressed in 
terms of spherical harmonics with adjustable coefficients. It is then pos
sible to express the tidal contributions to the products of inertia in 
terms of the enhancement function coefficients which can be estimated 
so as to obtain the polar motion components indicated by the analysis 
of the data. The estimated coefficients then can be used to predict the 
modified behavior of the equilibrium tide. 

SOLllTION TO THE LIOlJVILLE EQlJATrONS 

Th,~ Liouville equations of motion were first given by Liouville (1858). 
The following assumptions are now made, 

(I) the external moments and relative angular momentum terms vanish. 
(2) the moments of inertia arc constant and considerably larger than 

the products of inertia ;the equatorial moments of inertia arc equal. 
(3) thew,,. component of angular vdocity is a constant and much larger 

than w and w. x y 

Neglecting products of small quantities the equation of motion then 
become 

-i .xz u)z + A(:.,x ·I- ly z wl + (C - A) ·:.,Jy'-'z = 0 (2.1) 

-I y1. tvz + Awy 
.., 

·- lxzw~ + (A - C) WxWz = 0 
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Now let the products of inertia be given by 

(2.2) 

where the superscript r dcnotcH the contribution due to rotational 
deformation of the solid Earth and T indicates the contribution due to 
the ocean tide. The rotational deformation is known to be given by 

1 Rs 
Iiz = - -k2 WxWz (2.3) 

3 G 

1 Rs 
1r = - - k2 WyWz yz 

3 G 

where R denotes the radius of the Earth, C is the gravitational constant 
and k 2 is the second degree Love number. 

Equations (2.1) can then be written as follows, 

wx + n 2 w = (f x - nfy) x 
(A+ ct l ) (2.4) 

wy + n 2 w = <fy + nfx) 
where y 

(A + al) 

1 Rs 
al = -k2 w2 

3 G 
z 

(2.5) 

[(C - A) - aiJ 
n.= Wz 

(A + a1 ) 

f = • T JT 2 x I xzWz - yzWz 

f = ·r IT 2 y lyzWz + xzWz 
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Let 
IJz = M xz cos( tt - <J, xz) 

Ih = Myz cos(tt - <Pyz) (2.6) 

Then 
Wx = Wx cos(tt - <l>wx) 

Wy = Wy cos(tt - rf>wy) (2.7) 

wx -- {Ky+ K2 + 2 2 K 1 K 2 sin ( rJ> x z _ rf>yz)}· 1/2 

Wy = {K~ + K2 
4 + 2K 3K 4 sin(¢yz - rf>xz>} 1/2 

<l>wx = .ire Lm {KI ~in¢xz + K 2 cos¢yz)/(K 1 cos¢xz K 2 sinrf>yz) 

rf>wy = .ire tan {K 3 sin<tiyz + K 4 cos¢xzl/(K 3 cosrf>yz K 4 sin¢xz) 

K 1 = -Mxz(.; 2(t 2 + nw2 )/[(A + a 1)(n 2 - t 2)] 

K 2 = M yz w 2 nc0 2 + n)/[(A + a1 )(n
2 - t 2 )] 

K 3 = (\1yz/Mxzjh.1 

K4 = -~\1xz/MyJK2 

The polar motion components arc given by 

EQUlLIRRHlM OCEAN TIDE 

(2.8) 

The subject of an equilibrium ocean tide including the cffccl'l of ocean 
loading and the self attraction of the water has been the object of 
various investigations: Hendershott (1972), Dahlen (1976), Agnew and 
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Farrell (1978) and others. It follows that a global equilibrium tide is 
given by the following expression: 

( I + kn - h11 ) Un 

- Ol n ( I + k~ - h~ ) g 

0: n 
3 p 

2n + 

(3.1) 

where Un is the disturbing potential due to the mass of the tide generat
ing body and its motion relative to the Earth; kri, hn, ~ and h~ arc the 
Love numbers of degree n, p denotes the density of water and PE is the 
mean density of the solid Earth, g is the acceleration of gravity. 

In order to introduce the concept of a modified equilibrium tide an 
enhancement function is postulated and its functional form is assumed 
to be given by an expansion in spherical harmonics of the following 
form, 

E(8) - rDpO + rDpO + rOpO + rOpO - -oo 11 22 33 (3.2) 

where the P's are the Legendre polynomials and the r's are undetermin
ed coefficients. The modified equilibrium tide is then given by 

tM = E(8)~ (3.3) 

The unmodified tide is recovered when 

r g = I , r ? = r ~ = r~ = 0 . 

Now let n denote the surf ace area covered by the oc,eans and define 
~~ as follows: ,... 

t;1n = fl h1ds 
c 

(3.4) 
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where the surface integral is taken over the area of the continents. (1\1 
represents the quantity which must he added to ~M in order to satisfy 
conservation of mass. Note that, 

ff (,1Js = fl ~Mds -
Sphere 

Ji ~MJs 
Oceans (3.5) 

Uo,cans ~.\l ds -= flsphere f(8 ,i;;) b,1 ds 

} ..... L (;J~ COSffilp) 
~ pm = 

.J n m . 
n 111 l\1 ~ 111 Ill ¥' {

O over continents (
3

_
6

) 

I over oceans 

Consider the case when the disturbing potential is given by 

U = R 2 qO pO 
2 2 2 (3.7) 

q~ being a function of the position and mass of the disturbing body. 
Making use of Equations (3.l)-(3.7): 

+ (-
3
- aO + -~ aO + -~~ ao). ro] 

7 I 21 3 23] 5 3 

(3.8) 

(1 + k2 - h2) R2 
---------- ---------·-- --- qO 

1 - 0'.2 (1 + k'2 - h~) g 2 



cl 
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Thi· 1'.omplck cxprl's;;ion for thr modified equilibrium tide is then 

(3.9) 

l'KOl>llCTS OF IN El{TI ;\ 

Tlw contribution to the product;; of inl'rtia due to a modified equilibrium 
tide arc given by 

I = ff f\ fl. \.'., l x t J m 
XZ s;l,]il·rc 

lyt .=ff f(O,;Ji)yLdm 
Sphere 

where 
x = R sin 8 cos i/J 

y = R sin 8 sin i/J 

1. = R cos 8 

dm p~~(O)[Rd8 • RsinOdi/J] 

(4.1) 
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Making use of Equations (3.1-(3.9) yields 

{
lxz} 1T 4 {[48 (a!) 16 (al)] = - - p R B - + - rO 
I 3 2 35 b 1 7 bl o yz 2 4 

+ [48 (al)+ (576 + 1008) (a~)+~ (a1)~ rO 

75 bl 525 3675 bj 8085 bJ 'J I 

[(
24 96) (a}) (160 480) (al) 15120 (aA)l + ;-; + 245 b1 + 245 + 2695 bl + ISms b~ 'Jr~ 

[
72 (a

1
) (864 192) (a

1
) (13440 + 13200) (a!) + 175 bi + 1225 + 1575 bi + 24255 99099 bJ 

+ 147840 (a~)] ro _ ~ (a~) ~~1 
165165 b1 3 

5 b1 B 7 2 2 (4.2) 

The integration of the product of three and four spherical harmonics 

has been performed by means of the 3-.i symbols of Wigner (Rotenberg 
et al., 1959; Winch and James, 1973). 

NUMEllJCAL llESULTS 

The expressions for the products of inertia given by Equations (4.2) can 
be put in the form of Equations (2.6) since 

q~ = -(G0 /R
2 ) L Mi cos(aj) 

j 
(5.1) 

where G0 is Doodson's constant and Mi, <x.. arc the amplitudes and 
I ~ 

arguments for the various tidal constituents. The principal terms of the 
low frequency tides arc given by Cartwright and Edden (1973). For the 
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purpose of this investigation the nodal term is the one of interest, then 

M = -0.06556 

ex = tt - 259.18328° 

t = 271'/18.613 years 

epoch: 1899 December 31, 12h,Om, Os 
ephemeris time. 

(5.2) 

The solution of the problem consists in estimating the values of r&, 
rt rg and rg appearing in Equation (4.2) which will yield polar motion 
components satisfying the results from data anlysis. 

Markowitz (1979) analyzed 79 years of ILS (International Latitude 
Service) data and 17 years of IPMS (International Polar Motion Service) 
data, he obtained the following results: 

ILS 

x = (28 ± 13) cos (tt - 1903.7 ± l.2y) 

y = (22 ± 13) cos (ft - 1904.4 ± I.Sy) 

IPMS 

x = (22±13)cos(tt - 1905.7±1.5y) 

y = (25 ± 13) cos (tt - 1906.7 ± l.4y) 

The results are expressed in a geodetic coordinate system in cm units. 
The polar motion components corresponding to the case of a non
modified equilibrium tide are obtained by letting rg = 1, r~ = r~ = r~ = 0, 
this yields 

x = 0.31 cos (tt - 1906.14) 

y = 3.02 cos (tt - 1913.38) 



B. V. Sanchez 253 

In order to estimate the values of the coefficients that will fit the polar 
motion data a general purpose adaptive iterator for monlinear problems 
(Campbell et. al., 1964) has been used. The results are given below: 

x = 

y = 

!LS 

ro 
0 = -5.2~60094 

ro 
1 = 2.7151830 

ro 
2 3.1766850 

ro 
3 = -0.92669194 

27.48 cos(5t - 1905.37) 

22.84 cos (tt - 1904.97) 

!PMS 

rg = -2.0466899 

rO = 1.9925059 1 

rO = 2.0108450 2 

r~ = 0.0091169942 

x = 21.27 cos (tt - 1905.44) 

y"' 25.85cos(tt - 1905.05) 
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In both cases the coefficients were estimated so as to obtain polar 
motion components within 1 cm of the mean values given by Markowitz 
analysis. No constraints were imposed on the values obtained for the 
phase angles. 

The corresponding enhancement functions and tide heights follow 
from Equations (3.2) and (3.9), they are shown in Figures (5.1)-(5.5) 
below, also shown is the unmodified equilibrium tide. 

CONCLUSIONS 

The results indicate that a modified equilibrium tide could provide the 
excitation required to generate the polar motion component detected 
by Markowitz. However since no ocean dynamics have been incorporat
ed into the formulation of the enhancement function the results have 
to remain speculative. The concept of enhancement is not a new one 
although its application has been limited to the pole tide, in such cases 
different investigators have considered the possibility of enhancement 
reaching values up to 10 times the equilibrium, also analysis of tidal 
data has indicated the existence of latitude dependencies as well as mag
nifications in shallow seas. In that light and by comparison the magnitude 
of enhancement obtained in this study does not appear altogether exor
bitant, especially in the case of the IPMS data. Nevertheless the results 
should be considered as indicative of a possibility rather than as a quan
titative determination of ocean behavior. 
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APPENDIX 1 

Numerical values of the constants used in the investigation. 
Moments of inertia. 

A = 8.016(1044 )gm - cm2 

C = 8.043(1044 )gm - cm2 

Wz = 21r/86400rad/sec 

R = 6.378 (108)cm 

k2 = 0.30 

G = 6.67 (10-8 )cm2 dynes/gm2 

With the values above and making use of Equation (2.5) one obtains 
a 445 day Chandler period. 

= 0.86465 

p = 1.03gm/cm3 

g :;:: 9'socm/sec2 

The values of the coefficients a~ and b~ appearing in the ocean 
function, Equation (3.6) are those given by Balmino, Lambeck and 
Kaula ( 1973). The proper normalization factors have been applied in 
order to maintain consi1>tency throughout the calculations. 

G0 = 2.627723 (104)cm2 /sec2 
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