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THE ENHANCED NODAL EQUILIBRIUM OCEAN TIDE AND
POLAR MOTION

B. V. SANCHEZ*
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RESUMEN

El anilisis de los datos recientes del movimiento polar sefialan la presencia de un componen-
te cuya periodiddad se corresponde con el movimienio lunar aseendente. Se ha procesado una
investigacion sobre la respuesta tidal del océano a las fuerzas impelentes durante largos perio-
dos. Los resultados de esta investigacion sefialan la posibilidad de exilacion de un componente
ondulatorio o de “cabeeeo™ con la amplitud y frecuencia coincidentes con los datos registrados.
Se ha postulado, asi, una fundon de facilitacion del equilibrio, bajo la forma de una e xpansion
¢n las armonias zonales y los coeficientes de dicha expansion parecen Henar las condiciones de
componentes del movimicento polar de 1a magnitud requerida.

ABSTRACT

Recent data analysis of polar motion indicates the presenee of a component with periodidty
corresponding to the motion of the lunar ascending node. An investigation of the tidal response
of the ocean 1o long period foreing functions has been conducted. The results of the investigation
indicate the possibility of excitation of a wobble component with the amplitude and frecucncy
indicated by the data. An enhancement function for the equilibrium tide has heen postulated in
the form of an expansion in zonal harmonies and the coeflidents of such an expansion have
been estimated so as (o obtain polar molion components of the required magnitude.
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INTRODUCTION

Recent data analysis by Markowitz (1979) indicate the existence of a
wobble component with periodicity and phase corresponding to the
motion of the lunar ascending node.

The objective of this investigation is to ascertain the possibility of
the existence of a 18.6 year wobble component due to a modified equi-
librium ocean tide. The study of the equilibrium response of the oceans
dates back to Darwin (1@86). More recently Proudman (1960) reached
the conclusion that the tidal constituent with nodal period will follow
the equilibrium law while the semiannual and annual constituents will
probably follow it.

Wunsch (1967) tested the equilibrium hypothesis by computing
periodograms for the fortnightly and monthly tides on islands of the
Pacific which he found to deviate significantly from equilibrium. He
considers the nodal tide to tend towards equilibrium with a certain
degree of admissible uncertainty.

The ocean responds not only to the gravitational potential of the
Moon and the Sun, but also to the second degree potential of the Earth
rotation. The “pole tide™ or ocean response to the Chandler wobble has
been analyzed by various investigators. Haubrich and Munk (1959)
analyzed mean monthly values of sea level from 11 tide stations and
found the average pole tide with period of 14 monthsto have an amplitude
twice that predicted by equilibrium theory.

Hosoyama, et al. (1976) found the amplitude ratios of the observed
to equilibrium pole tides to increase at high and low latitudes in the
northern hemisphere; they also find latitude dependent phase delays
and advances with implications concerning the possible excitement of
the Chandler wobble. Naito (1977,1979) computed the secular variations
of the amplitude and phase of the observed pole tide for the period
1900-1964 and compared them with those of the equilibrium pole tide,
he found the largest amplitudes of the observed pole tide to take place
in the coasts of the Baltic and North Seas, he concludes that the observed
pole tides seem to have a certain relation with the equilibrium tides, but
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to have their own secular variations. Dickman (1979) studied the effects
of the pole tide on the Chandler wobble assuming pole tide amplitudes
up to 10 time equilibrium both for the case of global enhancement and
for regional enhancements in the North and Baltic seas. Dahlen (1976)
developed a general theory to determine the influence of the pole tide
upon rotation of the Earth.

The concept of an enhancement function which modifies the equi-
librium tide can be applied also to the oceanresponse to the gravitational
disturbing forces. Such an enhancement function can be expressed in
terms of spherical harmonics with adjustable coefficients. It is then pos-
sible to cxpress the tidal contributions to the products of inertia in
terms of the enhancement function cocfficients which can be estimated
so as to obtain the polar motion components indicated by the analysis
of the data. The estimated coefficients then can be used to predict the
modified behavior of the equilibrium tide.

SOLUTION TO THE LIOUVILLE EQUATIONS

The Liouville equations of motion were first given by Liouville (1858).
The following assumptions are now made,
(1) the external moments and relative angular momentum terms vanish.,
(2) the moments of inertia are constant and considerably larger than
the products of inertia;the equatorial moments of inertia are equal.
(3) the w, component of angular velocity is a constant and much larger
than w_and w_.
Neglecting products of small quantitics the equation of motion then
become

Iy wp v Ay L el #(C - A)wyw, =0 (2.1)

—iy:,_(..;z + Ac.'Jy ".Ixzwg + (A -Cwyw, =0
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Now let the products of inertia be given by

i

l)(Z I)r(Z + ];z
2.2
J, + 1§, (2.2)

Iy,

where the superscript r denotes the contribution duc to rotational
deformation of the solid Farth and T indicates the contribution due to
the ocean tide. The rotational deformation is known to be given by

. 1 R?

Iz = ‘—3"‘2 e Wy W, (2.3)
i 1 R®

Iyz = - '3— k2 — wywz

where R denotes the radius of the Earth, G is the gravitational constant

and k, is the second degree l.ove number.
Equations (2.1) can then be written as follows,

1

Sy + nlwy = ———— (I, - nf))
* oA ) Y (24)
.o 2 1 f‘. £ )
&y + n?w, = —— (fy + n
where y Y A+ a;) y X
1 RS
al =""'k2 - wzz
3 G (2.5)
[(C - A) - 3]
n.= w,
(A + 3))
fy = ifw, - I)]'.z"‘-’z2
fy = Jw, + 1],0?
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Let 1T, = My, cos(§t - ¢y;)

I3, = Myg cos(it ~ ¢y,) (2.6)
Then wy = Wy cos(§t - o)

wy = Wy cos({t - bwy) (2.7)

WX = {K% + K% + ?’.Kle Sin(d’xz - ¢yz)} 2
W, = {Kg + K2 + 2K3K4sin(¢yz - ¢xz)} vz

box = 4Ictan {(Klsinfpxz + chosdayz)/(l(1cos<1>xz - Kzsinq)yz)

arc tun {K3sin¢yz + K4cos<1>xz)/(K3cosd)),Z - Kysing, ;)
Ky = -My,w,8% + nw, )/I(A + a))(n? - ¢2)]
Ky = My, w,t(w, + n)/[(A + a))n? - {2)]
Ky = My, /My k,
Ky = "‘(sz,’/M‘yz)K‘.’
The polar motion components are given by
X = (wyg/w,)R

y = ((‘)y/wz )R , (28)

EQUILIBRIUM OCEAN TIDE

The subject of an equilibrium occan tide including the effects of ocean
loading and the seclf attraction of the water has been the object of
various investigations: Hendersholt (1972), Dahlen (1976), Agnew and
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Farrell (1978) and others. It follows that a global equilibrium tide is
given by the following expression:

~ (I + ky - hy) Uy,

E - ’ 1} -
1 -~ ap(l +kpy - hy) g (3.1)

3 p

Qan =

2n + 1 pg

where U_ is the disturbing potential due to the mass of the tide generat-
ing body and its motion relative to the Earth; k;, hy, k; and h’ are the
Love numbers of degree n,p denotes the density of water and p, is the
mean density of the solid Earth, g is the acceleration of gravity.

In order to introduce the concept of a modified equilibrium tide an
enhancement function is postulated and its functional form is assumed
to be given by an expansion in spherical harmonics of the following
form,

E@) = P + rPY + r9PY + ripg (3.2)

where the P’s are the Legendre polynomials and the r’s are undetermin-
ed coefficients. The modified equilibrium tide is then given by

ty = E(0)E 3.3)
The unmodified tide is recovered when
=1, r)=r

Now let  denote the surface area covered by the oceans and define

gy as follows: - .
EuQ = //C £y ds (34)
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where the surface integral is taken over the area of the continents. £},

represents the quantity which must be added to &, in order to satisf y
conservation of mass. Note that,

[[ Eyds = [/ Eyds - /] En ds
ZJcC Sphere Ocecuns
/] Eyds = ﬂ f(0,y) &y ds
Occans Sphere

2l cosm 0 over continents |
RO },4 L pm n = { 3.6)

m b sinmy 1 over oceans

(3.5)

Consider the casc when the disturbing potential is given by

U, = R?q} P} (3.7)

12 being a function of the position and mass of the disturbing body.
Making use of Fquations (3.1)-(3.7):

r}
2 2
+ 1ad + =29 +-a% - 1] 1§
0 7 2 7 4 2
: - 3.8
3 4 50 (3.8)
+i - a? + — ag + - ag' rg
7 21 231

L Dy
1-012(1 +]\2—h) g
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The complete expression for the modified equilibrium tide is then
[V VR (3.9)
PRODUCTS OF INERTIA

The contribution to the productsof inertia due to amodificd equilibrium

tide are given by
I\Z :ff t(/).\.'/)\l dln
S;‘hc.'c
1 = £ N .
ve T i0,v)yzdm
ffSphere (4.1)

where
x = R sin 6 cos ¢
y = R sin 6 sin y
7= R cos §

dm = p§, (6)[Rd6 - Rsin6dy]

|
!
]
4
i
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Making use of Equations (3.1-(3.9) yields

I n 48 /al 16 [ a}

o) {[E0)- 500

1y, 3 35 \b} 7 \b}

48 [ a 576 1008\ [a} 10080 /al
+ | — + | —t — + r?

75 \bl 525 3675/ \bj 8085 \b!

/24 96\ [al 160 480\ /a} 15120 / a}
+{l—+ — N I S v N 1) )

| \25 245/ \b} 245 2695/ \b} 15015 \ bl

[ 72 <a}> 864 192) <ag> <13440 13200> <a;>
+ | — + (—— + — + +

175 \b} 1225 1575/ \b} 24255 99099/ \b!

147840 <a;> . 12 <a;>g;,
r - ——— ———
165165 \bl /| > 5 \bl/B, (4.2)

+

The integration of the product of three and four spherical harmonies

has been performed by means of the 3+ symbols of Wigner (Rotenberg
et al.,1959; Winch and James, 1973).

NUMERICAL RESULTS

The expressions for the products of inertia given by Equations (4.2) can
be put in the form of Equations (2.6) since

qf = -(Gp/R?) Z M; cos(a;) (5.1)

i
where G, is Doodson’s constant and Mj, «; arc the amplitudes an(ri‘
arguments for the various tidal constituents. The principal terms of the
low frequency tides are given by Cartwright and Fdden (1973). For the
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purpose of this investigation the nodal term is the one of interest, then

M = -0.,06556

= ¢t - 259.18328°
a =17 59.18328 (5.2)
¢ = 27/18.613 years

epoch: 1899 December 31,12h,Om, Os

ephemeris time .

The solution of the problem consists in estimating the values of rJ,
19, 1 and r} appearing in Equation (4.2) which will yield polar motion
components satisfying the results from data anlysis.

Markowitz (1979) analyzed 79 years of ILS (International Latitude
Service) data and 17 years of IPMS (International Polar Motion Service)
data, he obtained the following results:

ILS
X = (28 13)cos (¥t - 1903.7 +1.2y)
y = (22t 13)cos({t - 1904.4 £ 1.5y)
[PMS
X = (222 13)cos (¢t - 1905.7 £ 1.5y)
y = (25 13)cos (¢t - 1906.7 £ 1 4y)

The results are expressed in a geodetic coordinate system in cm units.
The polar motion components corresponding to the case of a non-
modified equilibrium tide are obtained by letting 1§ = 1,1 =1} =13 = 0,
this yields

x = 0.31 cos (¢t - 1906.14)

W

y = 3,02 cos(¥t - 1913.38)
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In order to estimate the values of the coefficients that will fit the polar
motion data a general purpose adaptive iterator for monlinear problems
(Campbell et. al., 1964) has been used. The results are given below:

ILs

1§ = -5.2260094

1 = 27151830
19 = 3.1766850

1 = 092669194

'x = 27.48 cos (¢t - 1905.37)

%3
It

22.84 cos (§t ~ 1904.97)

IPMS
1§ = -2.0466899

1.9925059

-
-0
i

[l

2.0108450

1 = 0.0091169942

>
[}

21.27 cos ({t - 1905.44) ~

<
I

: 25.85 cos (§t - 1905.05)
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In both cases the coefficients were estimated so as to obtain polar
motion components within 1 cm of the mean values given by Markowitz
analysis. No constraints were imposed on the values obtained for the
phase angles.

The corresponding enhancement functions and tide heights follow
from Equations (3.2) and (3.9), they are shown in Figures (5.1)-(5.5)
below, also shown is the unmodified equilibrium tide.

CONCLUSIONS

The results indicate that a modified equilibrium tide could provide the
excitation required to generate the polar motion component detected
by Markowitz. However since no ocean dynamics have been incorporat-
ed into the formulation of the enhancement function the results have
to remain speculative. The concept of enhancement is not a new one
although its application has been limited to the pole tide, in such cases
different investigators have considered the possibility of enhancement
reaching values up to 10 times the equilibrium, also analysis of tidal
data has indicated the existence of latitude dependencies as well as mag-
nifications in shallow seas. In that light and by comparison the magnitude
of enhancement obtained in this study does not appear altogether exor-
bitant, especially in the case of the IPMS data. Nevertheless the results
should be considered as indicative of a possibility rather than as a quan-
titative determination of ocean behavior.
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APPENDIX 1

Numerical values of the constants used in the investigation.
Moments of inertia.

»>
I}

8.016(10*)gm - cm?

[

8.043(10*)gm - cm?
= 2n/86400rad/sec
= 6.378(108)cm

k, = 0.30

G = 6.67(10°8)cm? dynes/gm?

With the values above and making use of Equation (2.5) one obtains

a 445 day Chandler period.

(1 +ky - hy)
1 - ay(1 + Kk} - hy)

= 0.86465

1.03gm/cm3

©
1]

. 30 cm/sec?

o]
1

The values of the coefficients a;n and b? appearing in the ocean
function, Equation (3.6) are those given by Balmino, Lambeck and
Kaula (1973). The proper normalization factors have been apphed in

order to maintain consistency throughout the calculations.

Gp = 2.627723(10%)cm?/sec?
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