Geofisica Internacional (2003), Vol. 42, Num. 1, pp. 69-81

Probabilistic prediction of the next large earthquake in the
Michoacan fault-segment of the Mexican subduction zone

Sergio G. Ferrdes

Institute of Geophysics (UNAM), Ciudad Universitaria, Mexico City, Mexico

Received: October 3, 2001; accepted: July 9, 2002

RESUMEN

La estimacién del intervalo de tiempo At hasta el siguiente sismo fuerte, que es esperado en una region sismica, es un
problema dificil. Dentro del método mas convencional de predicciones basadas en el intervalo de tiempo (At), dada una distribu-
cién probabilistica de los intervalos de tiempo observados y el tiempo transcurrido (t) desde el dltimo sismo fuerte, podemos
estimar la probabilidad de un nuevo evento sismico en un intervalo de tiempo, digamos los siguientes 25 afios. En este articulo,
invertimos la aproximacion y estimamos el intervalo de tiempo (At) durante el cual ocurrird el nuevo sismo fuerte, usando como
criterio que la probabilidad condicional de ocurrencia sismica sea un maximo, dada que el nuevo sismo fuerte no ha ocurrido en el
tiempo (t) transcurrido desde el dltimo sismo fuerte. Adoptamos como distribuciones probabilisticas la distribucion de Weibull, la
distribucién de Rayleigh y la distribuciéon de Pareto (power-law).

Seleccionamos una regién limitada por 17.50 - 18.50° N'y 101.7 — 103° W para definir el significado de Michoacdn segmen-
to de fractura. Usando una lista de sismos histéricos (incluido el sismo de Petatldn) ocurridos en esta drea, encontramos que
usando el modelo de Pareto (power-law), se estima que un sismo destructor (M = 7) puede ocurrir antes del afio 2014.99, o
equivalentemente antes de diciembre de 2014.

PALABRAS CLAVE: Prediccién probabilistica, probabilidad condicional de ocurrencia sismica, modelos de Weibull, Rayleigh
y Pareto, estimacién de intervalos de tiempo de ocurrencia.

ABSTRACT

Estimation of the time interval At until the next strong earthquake to be expected in a seismic source region is a difficult
problem. In the conventional method of time-interval prediction, given some distribution of observed interval times between large
earthquakes and knowing the elapsed time t since the last large earthquake, the probability of a new seismic event in an interval
time At may be estimated. In this paper, we reverse the approach and we estimate the interval time for the occurrence of the next
large seismic event assuming that the conditional probability of earthquake occurrence is a maximum, provided that a large
earthquake has not occurred in the elapsed time t since the last large earthquake. We assume the Weibull distribution, the Rayleigh
distribution or the Pareto distribution for the earthquake recurrence time intervals.

In the Michoacdn seismic region and using a list of historical large earthquakes in this seismic area, we found that the Pareto
model predicts a damaging earthquake (M = 7) before the year 2014.99, or before December 2014 + 1.76(yrs.).

KEY WORDS: Probabilistic prediction, conditional probability of earthquake occurrence, Weibull, Rayleigh and Pareto models,

estimation of interval times of occurrence.

INTRODUCTION

The 19 September 1985 Michoacdn (Mexico)
earthquake (M = 8.1) was the most severe natural disaster in
Mexico’s seismic history. It caused over 10 000 deaths in
Mexico City and left an estimated 250 000 homeless (Astiz
et al., 1987). An imminent prediction of the next large
earthquake under the Michoacan fault-segment would be
useful. Such a prediction must rely en the observation of
phenomena that relate to large earthquakes.

Sykes et al. (1999) use 10 to 30 years as warning time
for long-term predictions characterized by average repeat ti-
mes of 50 to 300 years. Predictions of this type are based on
a knowledge of the average repeat time and the variations in
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individual repeat times for each segment, and of the time t
that has elapsed since the last earthquake. The physics for
this type of prediction is the slow buildup of stress. Predictions
are usually probabilistic in nature to allow for observed
differences in individual repeat times and uncertainties in
the parameters used in the calculations.

In Mexico a 30-year prediction seems appropriate for
active fault-segments in the Mexican subduction zone. The
Mexican subduction zone extends over about 1000 km along
the Middle-America trench, from the Jalisco-Colima region
through the Michoacan-Guerrero region to the Oaxaca region.
It appears to be segmented by the Rivera fracture zone, the
East Pacific Rise, the Orozco and O’Gorman fracture zones,
and the Tehuantepec ridge, (Singh and Mortera, 1991).
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A method of long-term prediction, which has been
studied extensively in connection with earthquakes, is the
use of probability distributions of recurrence times on indi-
vidual faults or fault segments. The difficulty lies in
determining the correct distribution, given the scarcity of data
of large seismic events on a given fault. By combining data
from many different faults, Nishenko and Buland (1987)
obtained a reasonably good fit to a lognormal distribution.
McNally and Minster, (1981) have argued that a Weibull
distribution is more appropriate.

Several stochastic earthquake generating models have
been used for seismic hazard evaluation. The most common
hazard model is the Poisson process model (Cornell, 1968).
Along a fault or within a seismic source zone, earthquakes
are assumed to take place following a Poisson process.
According to Cluff ef al. (1980), a Poisson process model
provides probabilities of earthquakes occurrences of any size
up to the designed maximum size that is characteristic over
an entire region, but the probabilities are independent of the
size and the elapsed time since the last major earthquake
event. The so-called “lack of memory” property of the Poisson
process is generally found to be in agreement with the
observed seismic activity related to moderate or large-
magnitude earthquakes.

Although Poissonian behavior has been shown for
seismic sequences of some regions (Gardner and Knopoff,
1974; Ferraes,1967), temporal dependence between
earthquakes has been detected in several seismic regions or
areas around the world (Bufe er al. 1977; Shimazaki and
Nakata, 1980; Sykes and Quittmeyer, 1981)

Two kinds of time-dependent models have been
proposed: time-predictable and slip-predictable (Shimazaki
and Nakata,1980). In a time-predictable pattern the time
between events is proportional to the size of the preceding
event, and therefore the date but not the size of the next event
can be predicted. In a slip-predictable model the time between
events is proportional to the size of the following event, and
the size of the next event can be predicted, but the date cannot
be predicted. Stochastic models of earthquake occurrence
have been developed, based on the time-predictable model
(Anagnos and Kiremidjian, 1984).

Following Schwartz and Coppersmith (1986), other
stochastic models have been proposed for seismic hazard
evaluation. Renewal models, which are referred to as real-
time models, imply a time dependent accumulation of energy
between major earthquakes. In this model, the likelihood of
earthquake occurrence during a period of interest, which is
referred to as conditional probability, is related to the elapsed
time since the last major event and the average recurrence
interval between major earthquakes. Renewal models have
been widely used to describe earthquake occurrence
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(Veneziano and Cornell, 1976; Kameda and Ozaki, 1979; Savy
et al., 1980; Grandori et al., 1984).

More complex models that consider the nonrandom
character of earthquake size (magnitude, moment, etc.) and
recurrence time T have also been proposed. For example, the
semi-Markov model relates the probability of future
earthquakes of particular sizes to the elapsed time since the
last major event and the magnitude of the prior event
(Patwardhan et al., 1980; Cluff et al., 1980; Coppersmith,
1981).

Ferraes (1985) introduced the Bayesian technique to
the field of earthquake prediction research. First, he used the
discrete version of Bayes’theorem and the assumption that
the earthquake process behaves as a Poisson process. Next,
Ferraes (1986) employed Bayes’theorem and the assumption
of a Bernoulli process. Further, Ferraes (1988) used the
discrete form of Bayes’theorem in conjunction with the
Poisson process and introduced the criterion of “optimum
Bayesian conditional probability” to derive a predictive for-
mula for the occurrence time of the next major earthquake
within a given seismic region.

Finally, in order to include variations in magnitude in
the prediction of earthquakes, Ferraes (1992) used the
continuous form of Bayes’theorem in conjunction with the
assumption that the earthquake process behaves as a
lognormal Gaussian process. The criterion of “optimum
Bayesian probability” was used to derive an equation to
predict the recurrence time of the next major earthquake on
the Ometepec fault-segment of the Mexican subduction zone.

In time-interval based prediction, given some assumed
distribution of interval times and knowing the elapsed time
since the last large event, the probability of a large event in
an interval time At, say, the next 25 years, is estimated
(Nishenko and Buland, 1987; Working Group on California
Earthquake Probabilities, 1988, 1990; Davis et al., 1989). In
this paper, we reverse the approach and we estimate the most
probable interval time At for the occurrence of the next large
event in the Michoacdn fault-segment of the Mexican
subduction zone.

CONDITIONAL PROBABILITY

The purpose of this section is to provide a brief synopsis
of conditional probability of event occurrence, P (At | t), and
to discuss some applications of conditional probability. We
use the conditional probability formula to predict the
occurrence of the next large earthquake in the Michoacan
fault-segment of the Mexican subduction zone.

Given an interval of t years since the occurrence of the
previous event, we wish to determine the probability of failure
before time t + At.



The conditional probability P(t < T<t+ At T > t),
which is the probability that an earthquake occurs during
the next At interval, is

P(t<T<t+Ar)

P(Atlt)= P(TZI) . (1)

In terms of the probability density of T, say f , we have

t+At

P(r<T<t+Ar)= f F(s)ds 2)
and

P(T>1)= j :}‘(s)ds . 3)

We substitute equation (2) and (3) in Equation (1). We get

J :}?ts)ds

P(Adt) = =
f f (s)ds @

Wesnousky et al. (1984) pointed out that Equation (4)
provides a reasonable tool for estimating seismic hazard on
a fault or fault-segment and made the assumption that the
underlying probability distribution of earthquake recurrence
time intervals is normal.

THE CRITERION OF MAXIMUM CONDITIONAL
PROBABILITY

We have proposed that the system of fractures (or
earthquakes) on any fault or fault-segment can be described
in mathematical terms using the conditional probability of
earthquake occurrence, equation (4), with probabilistic
models for the recurrence times of large earthquakes.

If earthquakes behaved in a purely periodic fashion,
the conditional probability P (At | t) would always be unity.
However, in Nature, significant stochastic fluctuations occur.
Therefore, the forecasting can be obtained by maximizing
the conditional probability P (At|t). In general, P (At|t) is
a real-valued function of two real variables (At, t).

However, t, the elapsed time since the last large
earthquake, can be measured. Thus, our fundamental
problem is to predict the time interval At for the occurrence
of the next large earthquake, given an observed elapsed time
t since the last large earthquake.The criterion for a maximum
conditional probability is

)
55 Pl =0. )
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THREE PROBABILITY DENSITY MODELS

Assuming reasonable models for the probability density
of interval times between earthquakes and using (4) for the
conditional probability of earthquake occurrence, we may
determine an expression for the conditional probability that
a large earthquake occurs during a future time interval At for
a given probability density model of earthquake recurrence
time intervals, in a specific fault or fault-segment. Here we
discuss three probability density models: (1) The Weibull
probability density model, (2) The Rayleigh probability
density model, and (3) The Pareto power-law probability
density model.

(1) The Weibull Probability Density Model

Assuming that the exponential probability distribution
is not the correct probability density for the Michoacan
segment (Davis et al., 1989), we seek a distribution model
with greater flexibility that the exponential distribution. The
Weibull distribution provides more flexibility and variety of
distribution shapes that some other models. Its two parameters
are a scale parameter 0 and a shape parameter 1. Forn =1,
the Weibull distribution becomes the single-parameter
exponential distribution. The Weibull distribution is (Meyer,
1972)

£1)= (T e ©

If the random variable T has a Weibull distribution with
probability density function given by (6), we have the
following expressions for the mean and the variance:

1

E(T)=6" r(— N 1),
n

V(T)= o' r(z + 1) - {r(l + 1)] : @
n n

To derive the Weibull conditional probability P_(At | t)
we substitute equation (6) in (4) and integrate. We get

6—9(r+Az)"
Pw(Aflf)=1—€_T : ®)

Note that the exponent of the numerator in equation (8)
can be written as follows:

n
0t +At)1 =6 t”(l + %) , 9)

where

n
(1+%J :1+n(%)+h(m). (10)
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If the elapsed time t since the last large earthquake (M
> 7) is large, the time interval At is small with respect to t
and h(At) becomes negligible. Substituting equation (10) in
(9) we obtain

0t +At)1 =6 tn|:1+n(%):|' (11)

Substituting equation (11) in (8) we get the approximate
Weibull conditional probability of earthquake occurrence

P, (Adr)=1- om0 (12)

2) The Rayleigh Probability Density Model

The Rayleigh probability density appears frequently in
communication problems. Sornette and Knopoff (1997)
calculated the expected time to the next earthquake for several
examples of statistical distributions with memory. They
exhibit in their Figure A3a the interesting subcase of the
Weibull distribution with m = 2, which is appropriate for
rectified Gaussian noise, known as the Rayleigh distribution.
According to Sornette and Knopoff (1997, p. 796), the
Rayleigh distribution has a tail with similar properties to that
of the Gaussian and decays faster than an exponential
distribution.
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Fig. A3. Weibull distribution (a) m=2 (Rayleigh distribution), cor-

responding to tail decaying faster than an exponential P(t') is shown

for t = t, and t = 2t, together with P(t"). From Sornette and Knopoff
(1997).

Let us assume that the interval time between
earthquakes on the Michoacdn fault-segment is modeled by
a Rayleigh distribution with parameter J, that is, the
probability density of T is

T

T2
f(T)=5—zexp(—F} T>0. (13)
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The mean and the variance of a Rayleigh - distributed
variable are

E(T) = 5\/?

14
V(T) = (2 - %)52 = 0.4295°. (1

It is first necessary to estimate the parameter . To do
this, equations (14) and the estimated sample mean [ and
variance 'y of our earthquake sample may be used (see Winkler
and Hays, 1975, p.516)

u=5,

g 12533 (15)

SN

or equivalently
6=0.7979u. (16)
To determine the Rayleigh conditional probability of

earthquake occurrence P (At | t), we substitute equation (13)
into equation (4), and integrate. We get

(+Ar)?
257

e
P(Afr) =1~ ——— a17)
o 26°
Next we expand (t + At)>.. We get
(t+ A1) =12 + 2148 + (A1) (18)

Substituting the above expression in equation (17). We get

72[At+(At)2
P(At)=1-¢ 2% - (19)

3) The Pareto Model

The statistical mechanics of earthquake and fault popu-
lations have recently been suggested to be a self-organized
critical phenomenon (Bak and Tang, 1989; Sornette and
Sornette, 1989; Carlson and Langer,1989: Ito and Matsuzaki,
1990, Main, 1995). It is assumed that the Earth has ap-
proached a state where the local stress is near failure every-
where, and deformation occurs predominantly on large cor-
related faults (Sornette et al., 1994). Individual earthquakes
represent small perturbations of this critical state. According
to Main (1995), this is consistent with the relatively small
stress drop in individual earthquakes, of the order of 1 to 10
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Mpa (Abercrombie and Leary, 1993), compared to the pre-
dicted frictional sliding stress for the upper crust of the order
100 to 400 MPa (Scholz, 1990, p. 126) and to the ease with
which earthquakes can be induced with relatively small stress
perturbations of the order 0.2 MPa during fluid injection or
withdrawal (Segall,1989). The distribution of avalanches
follows a power-law energy distribution. A fractal morphol-
ogy of individual fault planes and a fractal correlation of
hypocenters is consistent with observations (Kagan and
Knopoff, 1980; Turcotte, 1990).

A power-law increase in seismicity prior to a major
earthquake was first proposed by Bufe and Varnes (1993).
They considered the cumulative amount of Benioff strain
(square root of seismic energy) in a specified seismic region
and they showed that an accurate retrospective prediction of
the Loma Prieta earthquake could be made by assuming a
power-law increase in Benioff strain prior to the earthquake.

Assume a Pareto power-law probability distribution to
represent the recurrence times on the Michoacan fault-seg-
ment. The Pareto distribution has been found to describe a
wide variety of economic, social and physical phenomena.
According to Taylor (1974), the probability density function
for Pareto distribution is

f(T,OC,XO) _ Otng_(aJ'l)- (20)
The mean is
o
0 .
— fa<l
EM)=2¢o-1 "
. ifa=1 D

Thus, the mean of a Pareto distribution exists only for
o > 1. The variance of the Pareto distribution is

ar,

(@-1)(a-2)"

V(T)=

(22)

The variance of the Pareto power-law distribution is
infinite for o0 < 2.

For the conditional probability of occurrence P (At ['t),
we substitute Equation (20) in Equation (4) and integrate.
We get

o
P, (Adr)=1- =1-1%(t+Ar)™®
(M) =1 = (a7 @3

or equivalently

P,(Adt)=1-1* {t(l + %)}_a =1- {1 + (%)}_a. (24)

If the elapsed time t since the last earthquake is large,
we may assume that the time interval of interest At is small
with respect to t. Then using the three first-order terms of the
binominal series expansion,

a(Ar)

oo +1)(Ar)

P/:(Atlt)= 22

(25)

IDENTIFICATION OF THE MICHOACAN
SEGMENTATION

Following Mikumo et al. (1998) for the purpose of sta-
tistical forecasting of large earthquakes (M = 7) in the
Michoacén fault-segment, we consider a sequence of five
large earthquakes in the northern segments of the Mexican
subduction zone between the Rivera and Orozco Fracture
zones. Table 1 shows the distribution of recent major earth-
quakes in and around the Michoacan fault-segment.

Using the epicenters of Playa Azul (October 25, 1981),
Michoacan (September 19, 1985) and the aftershock of April
30, 1986, we obtain a seismic region bounded by 17.50° -
18.50°N and 101.70° - 103°W as the Michoacén fault-seg-

Table 1

Recent major earthquakes in and around the Michoacén fault-segment of the Mexican subduction zone, after Mikumo et al.

(1998)
Earthquakes Date Date Epicenter Magnitude
(years) Lat N Lon W
1. Petatlan 03/14/1979 1979.21 17.46 101.46 7.62
2. Playa Azul 10/25/1981 1981.82 17.75 102.25 7.43
3. Michoacan 09/19/1985 1985.72 18.14 102.71 8.05
4. Zihuatanejo 09/21/1985 1985.72 17.62 101.82 7.66
5. Aftershock 04/30/1986 1986.33 18.42 102.99 6.99
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ment. However, in Mikumo et al. (1998) it is shown that the
Petatlan earthquake (March 4, 1979) and the September 21,
1985, earthquake ruptured complementary segments to the
earthquakes occurred in September 19, 1985, October 25,
1981 and April 30, 1986. Thus, we consider two possible
boundaries for the Michoacén fault-segment: (1) without the
Petatlan and associated earthquakes (Table 2), and (2) con-
taining the Petatlan and associated earthquakes (Table 3).

ANALYSIS OF THE CATALOGS

In order to evaluate the validity of the catalogs in Table
2 and Table 3, and to assess the correct probability density
model for the Michoacén fault segment, we compare the three
models (Weibull, Rayleigh, and Pareto) to estimate or pre-
dict the recurrence time intervals T_ for the last three events
in the segment.

To predict the occurrence interval for any large event
already occurred we have the observed recurrence interval

(t,). The problem is to estimate the time t elapsed since the
last large earthquake and the time interval At.

One procedure consists in assuming t and At are ran-
dom variables and to maximize the conditional probability

of earthquake occurrence P(At | t) as follows.

P(At | t), has a maximum, if

9 P(Art)=0

OAt (26)
and 9

EP(Atlt) =0 - 27)

(a) Weibull model

Using equation (12) and equation (26), we may write

2 p(ad) = 3{ 1— g onan } -0
ot ot

>

Table 2

Catalog of large earthquakes in the Michoacén fault-segment during the period 1911-1986 after Anderson et al. (1989). This
table does not include the Petatldn earthquake

Event Date Latitude Longitude Recurrence Magnitude
No. (years) (°N) (°W) time

1 1911.43 17.5 102.5 _ 7.7

2 1941.29 18.8 102.9 29.86 7.7

3 1973.08 18.4 103.2 31.79 7.5

4 1981.82 17.8 102.3 8.74 7.3

5 1985.72 18.1 102.7 3.98 8.1

6 1986.33 18.4 103.0 0.61 7.0

Table 3

Catalog of large earthquakes occurred in the Michoacan fault-segment during the period 1911-1986. as in Table 2, but
including the Petatlan earthquake

Event Date Latitude Longitude Recurrence Magnitude
No. (years) (°N) (°W) times

1 1911.43 17.5 102.5 —_ 7.7

2 1941.29 18.8 102.9 29.86 7.7

3 1973.08 18.4 103.2 31.79 7.5

4 1979.21 17.46 101.46 6.13 7.62

5 1981.82 17.8 102.3 2.61 7.3

6 1985.72 18.1 102.7 39 8.21

7 1986.33 18.4 103.0 0.61 7.0
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from which we obtain

!

On(Ar)(n — 1)i1270AT — g (28)

Similarly using equation (12) and equation (27), we may
write

9 p(a) = i{l — g7omtan 1 } -0
0Af dAt

from which we obtain

R [ T (29)

From equations (28) and (29), we obtain the following
equations for t and At

(n-1)6n(An)"* =0 (30)
and
o' =0. (31)
Solving (30) and (31) by subtraction, we obtain
r=(n-1)Ar. (32)
For Equations (28) and (29) we can write
6—017(&)!”'1 =0- (33)

Expanding the left-hand side of the above equation in a
MacLaurin series, we get

1—on(A)"™" + s(Ar)* =0 , (34)

Table 4

where s(At)? becomes negligible for small At. Thus

1-6n(Ar)™" =0. (35)

Substituting Equation (32) into Equation (35) we obtain

1

A= ooty

(36)

For any large event already occurred, we do not know
the elapsed time t. However, we know the observed recur-
rence time T. Thus, in order to correlate t, At and T, we may
assume that the recurrence time 7T is approximately equal to

T=t+At. (37)

WEIBULL ANALYSIS OF THE CATALOGS

Now we consider the two sets of catalogues given in
Table 2 and Table 3, and we apply the predictive Equations
(36) and (37) to predict At, t and T for the following last
three earthquake events: The 1981 earthquake, the 1985
earthquake and the 1986 earthquake.

In Table 4 we carry out this analysis for the recur-
rence time T (estimated and observed) associated to the
earthquakes occurred in 1981, 1985 and 1986 for each cata-
log.

Inspection of Table 4 indicates that the use of the pre-
diction Equations (32) and (36), of the Weibull model, would
produce enormous errors of prediction in both catalogs.
Therefore, we conclude that the Weibull probability den-
sity is not the correct probability density model to repre-
sent the interval times between earthquakes in the
Michoacén fault—segment.

Differences between observed and predicted (Weibull prediction) values of the recurrence times of events occurred in 1981,
1985 and 1986 and for each catalog (Table 2 and Table 3).

Catalog Event Predicted Observed Errors
T. T E
Earthq. 1981 oo 8.74 oo
Table 2 Earthq. 1985 10.96 3.98 6.98
Earthq. 1986 28.99 0.61 28.38
Earthq. 1981 282.25 2.61 279.64
Table 3 Earthq. 1985 12.32 3.90 8.42
Earthq. 1986 17.63 0.61 17.02
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(b) Rayleigh model

In order to evaluate the Rayleigh model, we use equa-
tion (19) and equations (26) and (27) as follows:

Substituting Equations (19) into equations (27), we can
write

26(Ar)+(Ar)?

0 ad -

—P(A)=—1ql-¢ 2 =0
ot ot )
from which we obtain
26(Ar)+(Ar)?
At T oo
?e 2687 =0. (38)

Similarly substituting equation (19) into equation (26),
we can write

_2r(Ar)+(At)2

iP(Arp):i l-e 2 =0
oAt JAt

from which we obtain

24(Ar)+(Ar)?
t+(At) - 2
@5

From equations (38) and (39), we obtain the following
equations in t and At

5—22 0 40)
and
t+ At
5z 0. @1)

Solving (40) and (41) by addition, we obtain
t=-2At. (42)
From equations (38) and (39) we can write

26(Ar)+(Ar)?

T 43)

e =0.

Expanding the left-hand side of equation (43) in a
MacLaurin series, we get

76

_2u(An) + (Ar)?

1
252

+0(A1)* =0, (44)

where Q (At)? becomes negligible for small At. Thus, for small
At, we can write

~ 2u(An) + (A1) _ 0

1 9’
252

(45)

or equivalently we can write

At (A1)
T el P e A
t( 52 ) 25

At
From equation (40) we have (?) equal zero. There-

fore, we can write

(Ar)*
1-——=0, 46
282 (46)
from which we obtain
Ar=+(:2)5 . (47)

RAYLEIGH ANALYSIS OF THE CATALOG

Now we consider the two sets of catalogs given in Table
2 and Table 3, and we apply the predictive equations (42)
and (47) of the Rayleigh Model to predict At, t and 7 for the
following last three earthquake events: The 1981 earthquake,
the 1985 earthquake and the 1986 earthquake.

In Table 5 we carry out this analysis for the recurrence
time (estimated and observed) associated whit the last three
earthquakes occurred in 1981, 1985 and 1986, and for each
catalog.

Inspection of Table 5 indicates that use of the predic-
tion Equations (42) and (47) of the Rayleigh model, would
produce enormous errors of prediction. Therefore, we can
conclude that the Rayleigh probability density is not the cor-
rect probability density model to represent the probability
density of intervals times between earthquakes in the
Michoacén fault-segment.

(c) Pareto model

In order to evaluate the Pareto model, we use equation
(25) and equations (26) and (27) as follows.



Earthquake prediction in the Michoacdn, Mexico, subduction zone

Table 5

Difference between observed and predicted (Rayleigh prediction) values of the recurrence times of events occurred in 1981,

1985 and 1986, and for each catalogs (Table 2 and Table 3).

Catalog Event Predicted Observed Error
T (yrs.) T (yrs.) g(yrs.)

Earthq. 1981 104.34 8.74 95.6

Table 2 Earthq. 1985 79.41 3.98 75.4
Earthq. 1986 62.97 0.61 62.36

Earthq. 1981 76.47 2.61 73.86

Table 3 Earthq. 1985 59.58 3.90 55.68
Earthq. 1986 50.26 0.61 49.65

Substituting equation (25) into equation (27), we can
write

) _ 90 )o(Ar) oo+ (A |
EP(M[) ot { t 212 }_ 0

from which we obtain

2
~ (x(t?t) N oo +;)(Af) -0. (48)

Similarly, substituting equation (25) into equation (26),
we can write

9 pa) =2 {a(At)_a(oc+12)(At)2 }_= 0
oAt oAt | ¢ 2t

from which we obtain

o ala+l1)Ar)
p 2 =0. (49)

We solve equation (49) for At

t

At = .
a+1 (50)
Substituting this value for At in (48), we get
t=o+1. (5D

PARETO ANALYSIS OF THE CATALOGS

Here we consider the two sets of catalogs given in Table
2 and Table 3, and we apply the predictive equations (50)

and (51) of the Pareto model to predict At, t and T for the
following last tree earthquake events: the 1981 earthquake,
the 1985 earthquake and the 1986 earthquake.

In Table 6 we carry out this analysis for the recur-
rence time (estimated T_and the observed T ) associated to
the last three earthquakes occurred in 1981, 1985 and 1986,
and for each catalog.

Inspection of Table 6 indicates that use of prediction
equations (50) and (51), of the Pareto model, would pro-
duce smaller errors of prediction than the Weibull model
and Rayleigh model. Therefore, we can conclude that the
Pareto probability density is a correct probability model
for the probability density of interval times between large
earthquakes in the Michoacén fault-segment of the Mexi-
can subduction zone.

Differences between the recurrence time intervals (es-
timated and observed) associated with the last three large
earthquake events for the catalog given in Table 3 are
smaller than the errors determined using the catalog given
in Table 2. As the catalog given in Table 3 includes the
Petatldn earthquake, we can conclude that the Michoacin
fault-segment is ruptured by the Petatldn earthquake, as
pointed out by Mikumo (1998). Thus, our analysis con-
firms that the 1979 Petatldn earthquake ruptured the
Michoacén fault-segment.

PARETO PREDICTION OF THE NEXT LARGE
EARTHQUAKE

We proceed to find the time interval (At) which maxi-
mizes the Pareto (power-law) conditional probability of
occurrence Pp(At | t), Equation (25). We find the maxi-
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Table 6

Difference between observed and predicted (Pareto prediction) values of the recurrence times of events occurred in 1981,
1985 and 1986, and for each catalog (Table 2 and Table 3).

Catalog Event Predicted Observed Error
T (yrs.) T,(yrs.) g(yrs.)

Table 2 Earthq. 1981 2.99 8.74 -5.75
Earthq. 1985 2.69 3.98 -1.29

Earthq. 1986 1.79 0.61 1.18

Table 3 Earthq. 1981 2.65 2.61 0.04
Earthq. 1985 2.46 3.90 -1.44

Earthq. 1986 2.39 0.61 1.76

mum of P_by examining its partial derivative and setting it
equal to zero, as follows

o a(a+1)(Ar)

t t

=0

d
—Pp(At|t) > ,

At (52)

from which we obtain the predictive formula to estimate the
time interval in the Pareto model

gk

(53)

In order to apply the Pareto model we have to estimate
the parameter . To do this, Equations (21) and (22), and the
estimated sample mean L and sample variance may be used
(see Winkler and Hays, 1975, p. 516), as follows:

X

-1 =H (54)
Xy _
@-Da-2_"" (55)

We find o and x , solving these two equations simulta-
neously, and we find oc = 0.30976. We also need to estimate
the elapsed time t since the last earthquake. In order to do
this, we use the occurrence date of the last large earthquake
t = 1986.33, and the current date 2002.58 (July 2002) as
follows:

t =2002.58 (yrs) — 1986.33 (yrs) = 16.25 (yrs) .
To predict the time interval (Af) , using the Pareto
model, we substitute the value oo = 0.30976 and the elapsed

time t = 16.25 (yrs) in equation (53) and we obtain

(Af), = 1241 (yrs.) .
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Next, we estimate the total time Y=t + (A?) , for the
occurrence of the next expected large earthquake.

Y, = 16.25 (yrs.) + 12.44 (yrs.) = 28.66 (yrs.)

It should be noted that v, is close to the recurrence time
of the next expected future large earthquake.

Finally, we estimate the occurrence time of the next
expected large earthquake (M = 7). To do this, we add to the
predicted total time 7, = 28.66 (yrs.) the occurrence time of
the last observed earthquake t = 1986.33. Thus, we con-
clude that the next large earthquake event may occur approxi-
mately before the year 2014.99, or equivalently before De-
cember 2014.

ERROR OF PARETO PREDICTION OF NEXT
EVENT

According to Sterling and Pollock (1986, p. 338), a re-
alistic estimate of the error most likely to be incurred by us-
ing a particular fit to a set of experimental data is obtained
from the mean of the deviation between observed T, and
predictive T, values. We use the absolute rather than the
signed values for the deviations:

n

Z|Ti0 - Tie|

- H—
n

(56)

From Table 6 the errors are g = 0.04, g,= -1.44 and €,
= 1.76. Substituting these values into equation (56) we ob-
tain the prediction error

e=11.76 (yrs.) .
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This is the error for the total time Y, = 28.66 (yrs). Re-
call that Y, is the approximate recurrence time for the occur-
rence of the next large event in the Michoacan fault-seg-
ment.

CONCLUSIONS

We determine a time interval for the occurrence of
the next large earthquake in the Michoacédn fault-segment
using the maximum of the conditional probability P(At | t)
of earthquake occurrence.

As a guideline for a logical decision between models
we compare the difference between observed T and pre-
dicted T, recurrence times values, for the last three large earth-
quakes in the Michoacan fault-segment. We conclude that
the distribution of time intervals between events in the
Michoacén fault-segment is well represented by a Pareto
probability distribution, and we also conclude that the most
appropriate catalog is given by Table 3.

Using the Pareto model we conclude that a large earth-
quake of magnitude M > 7 may occur in the next time inter-
val Af = 12.41 (yrs.) counting from July, 2002, or before
December 2014 £ 1.76 (yrs.).

Following Main (1995), if the distribution of time in-
tervals between large earthquakes in the Michoacan fault-
segment follows a Pareto (power-law) distribution, the
Michoacédn fault-segment has already approached a state
where the local stress is near failure and deformation occurs
predominantly on large correlate faults. This is consistent
with observations (Mikumo et al., 1998)
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