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RESUMEN
A partir de los sismos de 1985 se ha instalado una gran cantidad de instrumentos de monitoreo en todo el valle de México.

El registro de estos movimientos ha generado valiosa información con la que se está en posibilidad de desarrollar nuevos
procedimientos analíticos basados en técnicas de aprendizaje.

Estos procedimientos se consideran aproximadores universales, por lo que se piensa son capaces de modelar todas las leyes
mecánicas que describen un fenómeno. De acuerdo con esto, hace algunos años se inició una investigación con objeto de desarrollar
una red neuronal artificial que modelara la respuesta sísmica de los depósitos de suelo de la ciudad de México. La red resultante,
que permite el cálculo de la respuesta de los suelos arcillosos, se presenta y se discute en este trabajo. Se demuestra que las redes
bien diseñadas representan una genuina alternativa a los métodos analíticos.

PALABRAS CLAVE: Movimientos de terreno, respuesta de sitio, inteligencia artificial, redes neuronales, modelado basado en
aprendizaje.

ABSTRACT
After the September 1985 earthquakes in Mexico City, many strong motion instruments were laid down throughout the

Valley of Mexico. Since then, a wealth of valuable information has been gathered. This has provided an excellent opportunity to
develop new analytical procedures based on knowledge-based techniques.

An Artificial Neural Network (ANN) is a computational mechanism able to acquire, represent, and compute a mapping from
one multivariate space of information to another, given a set of data representing that mapping. Accordingly, research aimed at
developing an ANN to model the earthquake response of Mexico City soil deposits was initiated a few years ago. The resulting
network that allows the computation of the response of the clayey ground is presented and discussed in this paper. It is shown that
well designed networks represent a genuine alternative to analytical methods.

KEY WORDS: Ground motion, site response, artificial intelligence, neural networks, learning algorithms.

among others. Many of the results from these studies have
had an important impact on engineering practice and have
been included, in recent reviews, in the  Federal District
Building Code.

In view of potential shortcomings of analytical mod-
eling and considering the ever increasing bulk of informa-
tion on earthquake-induced ground motions within the Val-
ley of Mexico, knowledge-based procedures are being ex-
plored to develop alternate ways to analyze the response
of Mexico City soil deposits. Modeling earthquake
geotechnical problems by means of Artificial Neural Net-
works (ANNs), when these are trained on a comprehen-
sive set of data, is very appealing because ANNs are ca-
pable of capturing and storing the related-phenomenon
knowledge directly from the information that originates dur-
ing the monitoring process.

In this paper, some of the results obtained using mul-
tilayer feedforward neural networks with a general regres-

1. INTRODUCTION

Following the September 1985 Michoacan earthquakes,
the authorities of the Federal District of Mexico sponsored
many research projects aimed at understanding the nature of
the ground motions developed within the Mexico City Met-
ropolitan area, and to explain the damaging effects they in-
flicted on a significant number of modern buildings. Several
of the studies included the installation of strong-motion in-
struments throughout the Valley of Mexico. Most of this
equipment was laid down on the ground surface, several ver-
tical arrays were set up within the clayey deposits, and some
buildings were also instrumented. This practice has contin-
ued over the years and now there are more than 130 acceler-
ometers installed. Accordingly, through the last 15 years a
wealth of information on ground response and building be-
havior (including dynamic soil-structure interaction) has been
gathered. These data have lent support to a series of pioneer-
ing investigations on soil behavior, wave propagation, build-
ing seismic behavior, and dynamic soil-structure interaction,
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sion learning paradigm are presented and discussed. The
capabilities of the resulting network to carry out blind pre-
dictions are also highlighted. Herein, by a blind prediction
it will be understood the reproduction of a recorded mo-
tion that has not been included in the database used in de-
signing the ANN. Thus, in a sense, blind prediction and
prediction capability will be used as synonymous through-
out this paper.

2. ARTIFICIAL NEURAL NETWORKS

Neural networks (NNs) are computational models in-
spired from the biological structure of neurons that mimic
the operation of the human brain. A NN is a nonlinear sys-
tem consisting of a large number of highly interconnected
processing units (processors). Each processor maintains
only one piece of information (its current level of activa-
tion) and is capable of a few simple computations such as
adding inputs, computing a new activation level, or per-
forming threshold logical computations. The large num-
ber of processors, and even larger amount of interconnec-
tions, equivalent to the neuronal structure of human brain,
give NNs their capability of knowledge representation.
Furthermore, it is through self-organization (or learning)
that a NN approximates some representation of a particu-
lar knowledge.

Contrary to traditional sequential programming tech-
niques, NNs are trained with examples of the concepts they
are trying to capture. The network then internally orga-
nizes itself to be able to reconstruct the presented examples.
ANNs have the ability to produce correct, or nearly cor-
rect, responses when presented with partially incorrect or
incomplete input data (stimuli). They also are able to gen-
eralize rules from the cases on which they are trained and
apply these rules to new stimuli.

The main attributes of neural networks are their ro-
bustness to noise data and its ability to generalize to new
(unseen) inputs. In other words, a trained network is ca-
pable of providing sensible output when presented with
input data that have not been used during training, even if
these data contain random noise. In general, it can be stated
that as the uncertainty in the unseen input data increases,
the predicting capabilities of the network are diminished
to some degree. However it can still make reasonable pre-
dictions.

The operation of a processing unit in a NN computa-
tion is rather simple. The output of a processor, which is
computed from its activation level, is sent to other (receiv-
ing) processors via the outgoing connections of the pro-
cessor. Each connection from one processing unit to an-
other one processes a numeric weight that represents the

strength of the connection, which is a filter (in the form of
multiplicative coefficient) of the output sent from one pro-
cessor to another one. It may serve to increase, or decrease,
the activation of the receiving processing unit. The activa-
tion level of each processor is computed on the basis of the
sum of the products of connection strengths and outputs com-
ing into the processor over its incoming connections, and
then sends its output to other processors to which it has out-
going connections.

The propagation of activation in a NN can be
feedforward, feedback, or both. In a feedforward network,
the signal can be propagated only in a designated direction.
In a feedback mechanism, the signal can flow in either di-
rection or recursively. In multilayer feedforward networks
with a certain type of learning rules, the amount of error de-
fined as a measure of the difference between the computed
output pattern and the expected output pattern is very much
dependent on the weights of the connections between the
processing units. Therefore, the definition of the computa-
tion is embodied within the connection strengths of a NN. It
should be understood that the programming of a NN does
not involve manually setting the numerical values of the con-
nection strengths, but rather, involves training the network
with many examples of cause-effect patterns and having it
automatically modify the connections through the usage of
learning rules.

This ability to modify its own weights, e.g., to self-
organize, makes neural computing feasible. Also, self-orga-
nization leads to generalization. By modifying the connec-
tion strengths between processors, NNs can create internal
features that might have not been apparent from the data and
thus would have defined the manual setting of connection
strengths. Likewise, they can be employed to produce cor-
rect, or nearly correct, cause-effect patterns not encountered
before, but having similar internal features to those input
patterns previously found.

Rumelhart et al. (1986) provided a description of the
basic architecture of ANNs, consisting of the following ba-
sic concepts: 1) a set of processing units, 2) the state of acti-
vation of a processing unit, 3) the function utilized to com-
pute the output of a processing unit, 4) the pattern of connec-
tivity among the processors, 5) the rule of activation propa-
gation, 6) the activation function, and 7) the rule of learning
used. The network topology, and the form of the functions
and rules are all learning variables that in neural network
learning systems lead to a wide variety of network architec-
tures.

Some of the well known types of NNs include the Com-
petitive Learning (i.e., Grossberg, 1976); the Boltzman Ma-
chine (i.e., Hinton et al., 1984); the Hopfield Network
(Hopfield, 1982) the Kohonen Network (Kohonen, 1984);
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the Adaptive Resonance Theory (ART) that evolved through
various versions and contributed with a number of valuable
properties with respect to other neural architectures, among
which could be mentioned its on-line and self-organizing
learning (i.e., Carpenter and Grossberg, 1987, 1991;
Fernández-Delgado and Barro, 1998); and the Backpropa-
gation neural networks (i.e., Rumelhart et al., 1986) that learn
by backpropagating the errors seen at the output nodes.
Backpropagation networks and their variants, as a subset of
Multilayer Feedforward Networks, MFN, despite their short-
comings, continue to be, currently, the most widely used net-
works in applications.

The networks developed in this research were designed
using the MFN architecture, where the processing units are
arranged in layers. Each network has an input layer, an out-
put layer, and one or two hidden layers. Propagation takes
place in a feedforward manner, from the input layer to the
output layer. The pattern of connectivity and the number of
processing units in each layer may vary with some constraints.
No communication is permitted between the processing units
within a layer. The processors in each layer may send their
output to the processing units in higher layers. The special-
ized notation for architecture definition used in this study
(mxhxo) is interpreted as follows: m is the number of input
cells, h is the number of processing units in the hidden layer(s)
and o represents the number of output cells.

At this stage it is important to define the input func-
tions, learning rules and transfer functions that are used later
on in this study.

Input Functions

Dot Product (DP). This input function is a weighted
sum of inputs plus a bias value, which scales each of them
according to its relative influence in increasing the net input
to each node. It observes that the weights and inputs may
take on negative values as well, so for inputs of roughly the
same magnitude, the absolute value of weights corresponds
to the relative importance of the inputs.

L1 Distance Input Function (L1). This calculates the
distance between two vectors. Thus the processing element
automatically obtains the distance to the input example. When
the General Regression learning rule is used, each process-
ing element on the hidden layer must have this distance pro-
cessing element function.

Learning Rules

Back propagation (BP). This is a steepest descent algo-
rithm that adjusts the weights of the net iteratively until the
function error (difference between expected and computed

values) is optimized. It has the advantage that it can be eas-
ily generalized but for large networks it converges slowly
and may get stuck in a local minimum.

Quick Propagation (QP). This is a supervised learning
algorithm, which provides several useful heuristics for mini-
mizing the time required for finding a good set of weights.
QP evaluates the trend of the weights and updates over time
to determine when the step size can be optimized (Fahlman,
1998).

Conjugate Gradients (CG). This is a classical numeri-
cal method for minimizing arbitrary functions when deriva-
tive information is available. When applied to NN it becomes
an excellent learning technique that can be used for batch
mode training of feedforward networks. The CG algorithm
uses the gradient of the weights to pick the initial direction
for search. The proper choice of the new direction is a conju-
gate “non-interfering” direction. Of the several CG ap-
proaches the Heatness-Stiffel (Johansson et al., 1990) method
was selected for the implementation in the NN.

Levenberg-Marquard (LV). This algorithm contains a
heuristic procedure that transitions smoothly between steep-
est descent method and the Gauss Newton procedure (Hagan
and Menhaj, 1994). The Gauss Newton method converges
to the minimum of a quadratic energy function in a single
iteration of the algorithm. The LV algorithm is one of the
fastest converging algorithms available for training small NN.
However, is limited to only one output and the memory re-
quirements are very high.

General Regression (GR). This is a memory-based
learning rule based on the estimation of probability density
functions. It features fast training times, can model nonlin-
ear functions, and has been shown to perform well in noisy
environments given enough data (Specht-Donald, 1991). The
primary advantage to the GRNN is the speed at which the
network can be trained. Training a GRNN is performed in
one pass. The training data are simply copied into the hidden
layers of the neural net. In a GR network, each node in the
hidden layer contains one pattern from the training set. When
presented with an unknown pattern, the distance between the
unknown example and each node in the hidden layer (i.e.,
training set) is computed and passed through a kernel func-
tion. The output of the kernel function is an estimation of
how likely the unknown pattern belongs to that distribution.
Thus, the output layer is simply a weighted average of the
target values close to the input pattern.

Transfer Functions

Sigmoid (sigm). This is the most popular transfer func-
tion. It compresses the input function when it takes on large
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positive or negative values. Large positive values asymp-
totically approach 1, while large negative values are squashed
to 0 or –1.

Hyperbolic Tangent (tanh). The tangent transfer func-
tion is also a “squashing” function, but has slower asymp-
totic convergence; it is useful as an alternative to the sig-
moid when it is known large weights are necessary.

Hyperbolic Secant (sech). This is the hyperbolic coun-
terpart to the gaussian function. It acts as a probabilistic out-
put controller. Like the sigmoid function, the output response
is normalized between 0 and 1. Gaussian and secant networks
tend to learn quicker but can be prone to memorization. That
is, being capable of repeating what they learn but unable to
carry out blind predictions.

3. DATA BASE USED

To develop a knowledge-based modeling procedure, in-
formation about cause and effect is needed in the form of
input vectors and corresponding outputs. Also, it is impor-
tant to have a clear understanding of the phenomenon (in-
tended to be modeled) to make adequate selections of the
variables that should be included as input units. For the par-
ticular case of soil deposit response analyses, it was required
to have information regarding the seismic environment of
the site. Likewise one should posses sufficient data to char-
acterize dynamically the soil deposits and to know the ground
responses that result from the input earthquakes.

Previous investigations (e.g., Romo and Jaime, 1986;
Romo and Seed, 1986) have shown that using the motions
recorded at CU site as outcrop motions, the recorded re-
sponses within the urban area of Mexico City can be repro-
duced fairly well by a one dimensional-shear wave-propa-

gation procedure. Thus, in this study, the excitation to the
soil deposits is represented by the acceleration response spec-
tra (5% damping) of the seismic movements recorded on the
surface of the firm deposits (Hill zones, see Figures 1 and 2)
outcropping towards the West of Mexico City. The general
characteristics of the motions, their epicentral distances and
geographic coordinates are given in Table 1. The location of
the corresponding epicenters is shown in Figure 3.

The soil deposits included in this investigation were
characterized dynamically by their elastic natural periods,
defined from the pseudo-velocities spectra (2% damping) of
the accelerograms recorded at the sites considered. The natu-
ral periods obtained are similar to those available in the form
of iso-period contours for Mexico City (Federal District Con-
struction Code, 1987). Natural periods and locations of the
sites included in this study are given in Table 2 and Figure 2.

In order to interpret, to model and to represent prop-
erly the mapping problem, the seismic responses measured
at the sites that were used as outputs in the ANN model de-
velopment process, were selected on the basis that motions
of the same seismic event were also recorded at CU site. The
data base, used as input patterns, was constructed using the
CU acceleration response spectra of the earthquakes included
in Table 1, and the elastic natural period that characterizes
each soil deposit. Natural periods were considered to clas-
sify the sites because they implicitly include the stiffness of
the layering system and the geometry of the soil deposits. In
fact, it is a key parameter in earthquake zonation. The accel-
eration response spectra of the seismic events recorded at
the sites shown in Figure 2 were used as output patterns.

Response spectra were used to represent the ground
movements because practicing engineers use them as input
motions in seismic designs. Furthermore, the Construction

Fig. 1. Stratigraphic characteristics of Mexico City soil deposits (provided by TGC, Geotecnia).
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Code for the Federal District of Mexico specifies seismic
excitations in terms of response spectra. Obviously, there are
other means to represent ground motions such as time histo-
ries of accelerations, velocities, displacements, Fourier Spec-
tra (should include amplitude and phase spectra), power spec-
tral densities, and so on. Because of their jagged nature, Fou-
rier spectra and time series are more difficult to reproduce
than, say response spectra. Investigations are currently un-
derway to develop networks that are able to make blind pre-
dictions of ground responses in terms of Fourier spectra and
acceleration time histories.

After screening the bulk of available information, the
resulting data base useful to design the ANN model includes
eighteen earthquakes (represented by their 5% damping ac-
celeration response spectra) with magnitudes M

s
 ranging be-

tween 5 and 8.1, and 23 soil sites having elastic natural peri-
ods varying from 2 to 4.2 sec. Due to space restrictions, this
article only includes the results for six sites that, nonethe-
less, yield a clear picture of the capabilities of knowledge-
based modeling. Seismic events identified by boldfaced num-
bers in Table 2, were used for testing the predicting capabili-
ties of the network. All others were used for the net-learning
stage.

Fig 2.  Site locations and Mexico City geotechnical zoning.

Table 1

General characteristics of input seismic motions (CU site)

           Date                              Epicenter                         Epicentral                 M
s

           a
max

(yr/mo/dy) Lat N LongW Distance (km) (magnitude) (gals)

85/09/19 18.081 102.942 419 8.1 35.0
88/02/08 17.494 101.157 291 5.5 2.2
89/04/25 16.603 99.400 304 6.7 10.3
90/05/11 17.046 100.840 308 5.1 1.6
93/05/15 16.430 98.740 326 5.8 1.4
93/07/29 17.380 100.650 266 5.0 0.7
93/10/24 16.540 99.980 321 6.5 4.1
94/03/14 15.670 93.010 770 6.5 0.6
94/05/23 18.030 100.570 205 5.6 4.5
94/07/04 14.830 97.290 539 5.9 0.5
94/12/10 18.020 101.560 290 6.3 5.9
95/09/14 16.310 98.880 337 7.3 8.2
95/10/09 18.740 104.670 580 7.5 2.6
95/10/21 16.920 93.60 646 6.2 0.3
95/10/30 16.980 98.500 336 5.3 0.4
97/01/11 18.090 102.860 411 7.3 5.8
99/06/15 18.200 97.470 220 6.7 11.9
99/09/30 15.890 97.070 443 7.4 7.8
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Fig. 3. Location of seismic events used in this study.

* Patterns used for testing

4. NETWORK DEVELOPMENT

Given the variety of ANNs and the accuracy with which
they reproduce specific behaviors, a number of possible de-

signs including different transfer functions, learning rules and
structures were evaluated with the purpose of optimizing the
ANN architecture. The alternatives studied in this paper were
discussed in section 2. In order to establish which of the dif-

Table 2

Data base used in the ANN design

Site SCT Garibaldi Balderas Candelaria CDAO Hangares
(GA62) (BL45) (CA59) (CDAO) (HA41)

Period, sec 2.1 2.2 2.4 3 3.5 4

90/05/11 93/07/29 93/07/29 94/05/23* 85/09/19 94/05/23*
94/05/23 94/05/23 95/10/30 95/10/21 88/02/08 93/05/15

Seismic 94/12/10 94/07/04 94/05/23 94/12/10 89/04/25* 94/07/04
events 93/10/24 94/12/10 94/07/04 93/10/24 90/05/11 94/12/10
used 89/04/25 94/03/14* 95/10/21 94/03/14 95/09/14 93/10/21
in this 95/09/14 93/10/24 94/12/10 95/09/14 97/01/11 94/03/14
study 97/01/11 95/09/14 93/10/24* 95/10/09 95/09/14

95/10/09 95/10/09 94/03/14 95/10/30* 95/10/09*
85/09/19 95/09/14

99/06/15* 95/10/09*
99/09/30*

Mexico city
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ferent transfer functions meets better the conditions of the
problem (input/output relationship), several topologies were
tried. In Figure 4, the correlation reached for nine networks
(using quick propagation as learning rule) with different trans-
fer functions is shown. From these results, and other not in-
cluded in this paper, it could be concluded that the sigmoid
function and a network topology (2,20,20,1) yielded the high-
est training correlation. When it is used in other topologies
(see Figure 4) the correlation attained decreases, but it is still
higher than the correlations obtained with the sech and tanh
functions.

To evaluate the learning and, most importantly, the pre-
dicting capabilities of the paradigms, seven networks were
designed and tested using the data included in Table 2 for the
SCT site. The input and output patterns were presented to
the networks as vectors where the real-valued input vector
describes a condition and the output vector the responses of
the system. The natural period of the soil deposit was not
considered as input variable because it was assumed that it
remained constant within the nine-year period the earthquakes
occurred (see Table 2).  As it can be seen in Figure 5, the
better-specialized function approximation network has 40
hidden nodes (20 nodes per layer), uses quick propagation
as learning rule and dot product as input function (QP-DP).
It is worth pointing out that the QP learning rule performs
more slowly as compared with others such as LV and CG
that use about 30 and 60% of the QP computation time. How-
ever, their generalization capabilities are much lower. Thus,
the QP-DP was considered the most appropriate learning rule
of all three. The entire learning process must be monitored
to detect any memorization (lost of generalization capabili-
ties) of the ANN. Memorization can be overcome by increas-
ing the number of training patterns or decreasing the number
of nodes in any or all of the hidden layers, as it is shown in
Figure 5.

In this figure, the correlations for different architectures
and learning rules have two prominent peaks. One corre-

sponds to the optimum architecture and the other to a topol-
ogy that memorizes. To tell whether an architecture is the
optimum one or simply memorizes, different topologies
(similar to the one in question) should be considered. If the
correlations obtained with the new topologies decrease sys-
tematically, the network memorizes. If the correlation graph
has a jagged configuration then the architecture that yields
the maximum correlation value corresponds to the optimum
design.

After a number of trials using networks with different
topologies, it was realized that as the number of points used
to define the input spectra increased, it became more diffi-
cult to differentiate the dynamic ranges of the variables as-
signed to the input processing units and their relationship
with the output processors. Furthermore, when more sites
are added to the data base, the representativeness of the soil
deposit natural period faded out. It was also learnt that to
overcome these shortcomings, it was necessary to increase
significantly the size of the input vector (number of training
patterns), as the number of points used to represent the input
response spectrum grew. This led to a tremendous increase
in computation time, since the number of operations per it-
eration increases exponentially with the amount of training
patterns. These observations pointed out that the specialized
function approximation and autocorrelation networks, com-
monly used in this type of problems, required to be coupled
with specialized processing units (Masters, T. 1993).

When autocorrelation networks are used to model re-
sponse spectra, many of their details are missed, particularly
in the neighborhood of the site’s natural period (where the
maximum spectral ordinates usually develop), and spectral
peaks that show up at higher frequencies. For the network to
recognize sharp peaks it is necessary to use many computa-
tional resources. This slows down or even precludes network
learning. However, after many trials, neural networks are
capable of reproducing spectral shapes featuring large ordi-
nate differences. An alternate procedure to overcome these

Fig. 4. Transfer function selection from QP-DP (Quick Propaga-
tion- Dot Product) topologies.

Fig. 5. Comparison between learning rules behaviors in the
prediction stage.
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shortcomings is to use specialized neurons that focus on
one region of the variable’s domain as described in Nauck
et al. (1997). Although this alternative leads to stable solu-
tions, it has the drawback that the number of neurons and
training patterns are increased.

Accordingly, new specialized function approximation
neural networks were used in this study. There is a substan-
tial amount of numerical evidence (e.g., García Benítez and
Romo, 1999) that shows that for complex problems, like
the one treated here, an alternative that can yield better re-
sults in approximating functions is the General Regression
(GR) learning rule and distance processing element func-
tion (L1). To evaluate this alternative, the same case of SCT
site was used and the corresponding architecture was de-
veloped. The results, in terms of acceleration response spec-
tra, that depict the predicting capabilities of GR-L1 net-
works are included in Figure 6. This figure also includes
the results obtained with two networks that use the QP learn-
ing rule and the response spectrum of the accelerogram re-
corded at the site during the 99/09/30 earthquake. From this
information, it is clear that the GR algorithm is significantly
more accurate. In fact, the spectrum predicted by the GR-
L1 network falls on top of the actual spectrum practically
throughout the range of periods considered in this analysis.
Accordingly, the GR algorithm was used to compute the
response at the additional sites those which are marked with
asterisk in Table 2, where the events that were used for train-
ing and testing the ANN are indicated. Since the natural
period of the soil deposit varies with the location of the
site, this parameter was included in training the network.

Thus the input variables were the period of soil deposits, the
spectral ordinates (CU site) and the corresponding structural
periods. The resulting network has only one hidden layer with
2050 processing units and one output unit (the ordinates of
the spectral responses, for the same input structural periods,
at each soil site).

The results obtained with this network are compared in
Figure 7 with the actual spectra at six sites. It may be seen that
the network reproduces with high accuracy the spectra of the
measured acceleration time histories. In this figure, it is also
included the blind prediction for SCT site using a random vi-
bration (RV) procedure developed by Romo (1976). It can be
seen that the ANN prediction is more accurate than the RV
prediction. It should be mentioned that this RV method has
been used extensively  in Mexico City, and has shown its ca-
pabilities to reproduce with a good degree of accuracy the
spectra of the motions recorded at many sites for different
earthquakes, including the one recorded at SCT site during
the September 19, 1985 earthquake (Romo and Jaime, 1986;
Romo and Seed, 1986). These results  support the argument
raised in the introduction, regarding the predicting capabili-
ties of neural networks versus conventional mathematically-
based procedures.

The findings shown in this paper and other results pre-
sented elsewhere (Romo, 1999; Romo et al., 2000), that in-
clude additional sites in the lake and transition geotechnical
zones, clearly indicate that knowledge-based procedures are
capable of modeling accurately seismic problems which are
inherently complex.

Fig. 6. Predicting capabilities of networks with QP (Quick Propagation) and GR (General Regression) learning rules.
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Fig. 7. Comparison of measured and ANN computed responses at six sites in Mexico City.

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

The information given in this paper demonstrates that
ANNs are able to predict with good approximation ground
surface responses to seismic events that come from different
earthquake sources, as indicated in Figure 3. The case of the
Tehuacan seismic event (99/06/15) is particularly encourag-
ing because procedures based on empirical relative transfer
functions failed to produce reliable results (see Singh et al.,
1999). Similarly, the analytical tool used here for compari-
son purposes does not seem to predict accurately ground re-
sponses for intraslab earthquakes generated at mid distances
from Mexico City.

After a significant number of trials using different com-
binations of input functions, learning rules and transfer func-
tions, combined with one and two hidden layers and a vari-
ety of processing neurons in each layer, it was found that the
architecture (2,2050,1) with GR-L1 learning rule, was the
most accurate.

The various attempts to find the best ANN architecture
presented in the previous pages evidence that a key point,
regarding this knowledge-based technology, is to ensure its
proper learning. An important factor to achieve this, is re-
lated to the level of understanding the designer has about the
physics of the problem to be solved.
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Although the GR network presented here yields very
good results, some improvements are still possible. Natural
systems are governed by numerous interacting variables
(high dimensional problem) with drifting parameters in the
presence of noise (internal and external perturbations). One
promising approach for assessing such nondeterministic
complexity is recurrence quantification analysis (RQA). This
is a tool for the analysis of the experimental time-series data
that transforms a single trajectory in a two dimensional rep-
resentation (e.g, vectors into matrices).

Proper application and correct interpretation of this
powerful discriminatory tool in the ANN model of the dy-
namical system can yield definitive clues for the qualitative
assessment of time series. With RQA one can graphically
detect hidden patterns and structural changes in data or see
similarities in patterns across the time series under study. In
this sense, the addition of RQA parameters would most likely
improve the model proposed here because, it would be ca-
pable of identifying new patterns from different stratigra-
phies having equal natural periods. This would add power
to the forecasting capabilities of the ANN because, as it is
known, two soil deposits having equal natural period but
different stratigraphy would behave differently under the
same input motion.

Before the network developed in this study is used by
the profession, the network has to go through a more in-
tense period of testing. Once the reliability of the network
is established beyond any doubt, friendly software or a chip
for a computer can be developed, and thus released to be
used by practitioners.
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