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RESUMEN
Este artículo presenta un método de análisis para evaluar los desplazamientos inducidos sísmicamente en taludes. El

procedimiento considera las características no lineales de los materiales, la variación espacial de la resistencia (fricción) a lo largo
de la superficie potencial de falla y el efecto inercial de la cuña deslizante, la cual es considerada como un sistema flexible de
múltiples grados de libertad. Los efectos potenciales son mostrados a través de casos hipotéticos por medio de varios modelos y
dos sismos diferentes. El método de análisis propuesto se evalúa por medio de comparaciones con métodos existentes.

PALABRAS CLAVE: Talud, análisis sísmico, modelo discreto, cinemática.

ABSTRACT
This paper presents a finite-element analysis to evaluate earthquake-induced displacements in slopes. The procedure takes

into account the nonlinear characteristics of the materials, spatial variation of strength (friction) along the potential failure surface
and the inertial effects of the sliding wedge considered as a flexible multi-degree of freedom system. The potential effects are
shown through hypothetical cases using two different seismic events. The model proposed in this paper is compared with other
methods.

KEYWORDS: Slope, seismic analysis, discrete model, kinematics.

1. INTRODUCTION

Traditional methods for dynamic analysis of slopes have
limitations in their formulations. Newmark’s (1965) method
assumes that the magnitude of rigid-wedge relative displace-
ments, with respect to its support, depend on the magnitude
and frequency content of the input motion. This method sup-
poses that the security factor is equal along the entire sliding
surface. The procedure developed by Chopra and Chang
(1991) assumes that a rigid dam slides only if the frictional
force developed at soil-dam interface is exceeded. They also
considered the deformational effects of gravity dams. On the
other hand they ignore higher vibration modes, because they
model the problem with a single degree of freedom system.
The method of Makdisi and Seed (1978) assumes that the
sliding surface is completely developed according to a rigid-
plastic model once the safety factor drops below one. Kramer
and Smith (1997) do not consider the kinetic effects of the
higher vibration modes. Rathje and Bray (1999) use the
Chopra’s approach but consider uniformly distributed flex-
ible mass to model the sliding wedge.

One important aspect that the above methods do not
consider is the force caused by the inertia of the soil mass
that moves downward, coupled with the higher vibration
modes of the descent mass. Herein, a procedure that over-
comes this shortcoming is advanced.

The method proposed in this paper, model slopes with
Voigt-type, viscous discrete elements can take into account
the nonlinear behavior of the soil mass. The procedure is
capable of computing the overall stability and earthquake-
induced displacements of natural or man-made slopes. Since
the analysis is carried out in the time domain, it is possible to
know the behavior of a particular slope at any time during it
shaking.

The importance of considering higher vibrations modes
arises from the fact that multi-degree freedom systems in-
duce inertial forces completely different than those caused
by single degree systems. Indeed, at a given time the inertial
forces caused by the masses in multidegree freedom systems
may have opposite directions. This cannot be modeled by
simple oscillators. This difference will redound in the per-
manent displacements computed with both approaches. Fur-
thermore, the permanent displacements are affected by the
slope vibration natural periods. Thus, if only the first natural
period is considered in the analysis, the effect of the higher
natural periods will be neglected. In this paper it is shown
how significant is this aspect of the system response on per-
manent displacements.

In addition to the disadvantages previously mentioned
of most available procedures, when the sliding of the soil
mass is triggered, kinetic forces start playing a role in the
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overall phenomenon. These kinetic forces affect, in turn, the
earthquake loading vector, and consequently the inertial
forces. These effects will be more notorious as the number
of degrees of freedom augment.

It should be realized that when the slope is subject to
large earthquake loadings, the nonlinear behavior of the soil
generally modifies the overall response of the slope. Accord-
ingly, the patterns of the kinetic and inertial forces will be
changed, and so the displacements.

2. PROPOSED DYNAMIC METHOD OF ANALYSIS

Botero and Romo (2000) formulated a dynamic analy-
sis for the sliding wedge phenomena in a slope. Their model
is represented by discrete elements as shown in Figure 1.

Once the sliding surface geometry is determined, the
soil mass is divided into an adequate number of discrete ele-
ments depending on the shape and height of the sliding wedge.
The elements are characterized by the stiffness and damping
ratios, corresponding to the soil characteristics in each layer.
This could be determinated with back-analyses, laboratory
test or in situ test. The soil mass is lumped at the nodes to
account for the inertial effects according to the mass distri-
bution and characteristics of the slope. The boundary condi-
tions at the model base are the failure surface friction param-
eters, which are determined from soil testing. The model
considers static friction when the potentially sliding mass
remains still and dynamic friction when sliding is triggered.
The initial and subsequent inclinations of the model base are
defined from the sliding surface geometry. If sliding occurs,
the inclination will change throughout the seismic action.
The material properties can be also modified throughout the
earthquake duration, to account for the cyclic effects of soil
behavior, (i.e., shear modulus degradation).

2.1. Equilibrium equation

The acting forces on the sliding wedge (Figure 2) de-
pend on the weight of the wedge, its stiffness, its damping
and the inertia forces caused by the earthquake shaking.

The internal and external forces acting in the model
can be computed as follows. The resistance force F

r
 depends

of the normal force between the lower mass and the sliding
surface and is determined by Equation 1

  F Nr = ( )tan µ , (1)

where N is the normal force defined by Equation 2 and µ is
the static coefficient of friction, when the system is sliding,
the static coefficient of friction changes to the dynamic co-
efficient of friction. However, in this study both were con-
sidered equal.

The normal force is the resultant of the ground accel-
eration and gravity acceleration on the total mass acting of
the system and its variation with time

N M g Ug= ( ) − ( )[ ]1 cos sinθ θ˙̇ , (2)

where M
1
 is the total mass of the system and is defined by

Equation 3, g is the gravity acceleration, θ is the base incli-
nation angle and Ü

g
 is the ground acceleration.

The total mass is given by the sum of all the masses in
the system (see Figure 2)

  M m mi b

i

n

1
1

= +
=
∑  , (3)

Fig. 1. Slope discrete model.

Fig. 2. Acting forces on the sliding wedge.
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where m
i
 is the mass of the discrete system and m

b
 is the

mass directly over the sliding surface.

The driving force (Equation 8) results from the active
forces in the system given by Equations 4 to 7.

F M gs = ( )1 sin θ (4)

F k Uk = (5)

F c Ud = ˙ (6)

F m U Ui b g= +( )˙̇ ˙̇
0 (7)

F F F F Fa s k d i= + + +  , (8)

where F
s
 is the shear force at the model base due to the over-

lying weight. F
k
 is the stiffness force due to relative displace-

ment between contiguous nodes and k is the element stiff-
ness. U is the relative displacement of a node with respect to
the base. F

d
 is the damping force due to the relative velocity

between the node and the base and c is the element damping.
U̇is the relative velocity of the node with respect to the base,
and F

i
 is the inertial force due to mass m

i
 times (Ü

0
+Ü

g
).

Here Ü
0
 is the acceleration of the system when it slides at its

base and F
a
 is the induced force by the excitation (driving

force).

Taking Equations 4 to 7 and replacing them in Equa-
tion 9, we obtain:

           F M g k u cU m U Ua b g= ( ) + + − +( )1 0sin θ ˙ ˙̇ ˙̇ . (9)

During the seismic excitation, the slope equilibrium is
evaluated by means of Equations 1 and 8. When F

a
 > F

r
 oc-

cur permanent displacements that keep on increasing until
the driving force drops below the resisting force.

2.2. Equation of movement

The response of each node, when the system does not
slide, can be computed with the following equation of mo-
tion:

M U C U K U M Ug[ ]( ) + [ ]( ) + [ ]( ) = − ( )( )˙̇ ˙ ˙̇
1 cos θ ,    (10)

where M is the mass matrix, Ü is the base relative accelera-
tion vector, C is the damping matrix, U̇  is the base relative
velocity vector, K is the stiffness matrix and U is the base
relative displacement vector.

When the system slides, the equilibrium at the sliding
interface is established to compute the kinetic acceleration.
The equation of motion for this condition is given by

M U M g M Uc c g1 1 1
˙̇ ˙̇= − −[ ]−µ θ θ cos( ) sen( )

˙̇ ˙̇a m M Ui i g

i

n

   cos( )−
=
∑ 1

1

θ ,

(11)

where ä
i
 is the relative acceleration, of node i, parallel to the

sliding surface, Ü
c
 is the kinetic acceleration, µ

c
 is the ki-

netic friction coefficient and n is the number elements. The
kinetic acceleration is computed with Equation 12

˙̇ ˙̇ ˙̇ ˙̇ cosU g U
M

U m Uc c g i i g

i

n

= ( ) ( )[ ] ( )− − − −
=
∑µ θ θcos sin  

1

1 1

θ .

(12)

When the system is sliding, the equation of motion of the
full system is

    M U C U K U M U Uc g[ ]( ) + [ ]( ) + [ ]( ) = − + ( )( )˙̇ ˙ ˙̇ ˙̇
1 cos θ .  (13)

2.3. Dynamic model of the materials behavior

The nonlinear behavior of the materials is computed
with the angular deformation between nodes (Equation 14)
and a Masing-type model (Romo, 1995). The angular defor-
mation is:

    γ =
− −U U

H
i i 1

2
, (14)

where U
i
 is the displacement of the node i, U

i-1 
is the dis-

placement of node i-1 and H is the separation between them.
The shear modulus and damping ratio curves can be expressed
as:

G

G
H

γ
γ

( )
= − ( )[ ]

max

1 , (15)

where G (γ) is the shear modulus for any deformation and
G

max
 is the maximum shear modulus.

H r

B

r

B
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γ

γ
γ

γ
γ

( ) =






+ 





















2

2

1
, (16)

where γ
r
 is a reference deformation, and A and B are param-

eters dependent of the plasticity index. The parameter A could
have values between 0.56 - 1.0 and parameter B varies from
0.2 to 0.86.

The capacity of the system to dissipate energy can be
computed with the following equation:
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   λ λ λ γ λ= −( ) ( )( ) +max min minH , (17)

where λ is the damping ratio for deformation γ, λ
max

 is the
maximum value of λ that can be reached before soil fails
under dynamic load and λ

min
 is the minimum value of λ.

3. MODEL VALIDATION

The model was compared with that proposed by Bray
et al. (1995). The results for slope models with heights of
16 m, 32 m, 44 m and 60 m are compared in Figure 3. It may
be seen that both approaches yield similar results.

To evaluate the model capabilities to compute perma-
nent displacements in a slope as a function of the period it
was compared with the model proposed by Kramer et al.
(1997). The 1989 Loma Prieta earthquake acceleration record
was used as input motion. Again, it may be seen that the
proposed model yields similar results to those produced by
Kramer et al.’s model. The results are shown in Figure 4.

4. APLICATION CASE

The slope of the Figure 1 was analyzed in order to show
the effect and the influence of the kinetic forces and the num-
ber of degrees of freedom used to discretize the slope, when
mass sliding is triggered, on the magnitude of earthquake-
induced permanent displacements. The input motions were
the accelerographs recorded at SCT site (which is located
within the soft sediment zone where heavy damage was
caused in Mexico City) during the Michoacán earthquake of
September 19, 1985 and at Yerbabuena Island in San Fran-
cisco Bay during the 1989 Loma Prieta earthquake. The fun-
damental periods of these accelerograms are 2.35 s and 0.62
s, respectively. This section intendeds to evaluate the effects
of the natural periods of the slopes and the earthquakes char-
acteristics on the permanent displacements, considering the
condition of a soil mass sliding. The height of the slope was
75 m. The sliding mass was concentrated at each node, and
the inclination of the sliding surface was 5°. The slope char-
acteristics were kept equal for the three models for each earth-
quake.

4.1. Effect of the slope’s freedom degrees

The traditional methods only consider one degree of
freedom systems. To evaluate the potential effect of slope
flexibility (considering more than one degree of freedom)
on earthquake-induced displacements, three models having
one, two and three degrees of freedom were considered. The
results of the analyses were interpreted making use of the
displacement spectrum proposed by Kramer et al. (1997).
The ordinates of this spectrum correspond to the permanent
displacements accumulated throughout the excitation, for dif-
ferent values of the slope natural period. This shows the in-
fluence of the slope flexibility on the permanent displace-
ments induced by the given seismic event. The spectra com-
puted for the slope discretized using one, two and three de-
grees of freedom for the Michoacán and Loma Prieta earth-
quakes are depicted in Figure 5.

It may be seem that all spectra are alike in the neigh-
borhood of the earthquake fundamental period, and that the
maximum permanent displacements occur at the earthquake
fundamental period. For the Michoacán earthquake, the slope
discretized with three degrees of freedom accumulates more
displacement compared with the slopes having one and two
degrees of freedom, that those developed for about the same
maximum displacement for the Loma Prieta earthquake. It
may be seen that the systems with two and three degrees of
freedom, are similar and their displacement magnitudes are
lower than for the one-degree of freedom system. These re-
sults are revealing because they show the potential effects of
the higher vibration modes on the permanent displacements.
Also, they show that the frequency content of the input mo-
tions can affect appreciably the magnitude of the slope per-

Fig. 3. Comparison between Bray et al.’s and Botero and Romo’s
methods.

Fig. 4. Comparison between Kramer et al.’s and Botero and
Romo’s methods.
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manent displacements. To give an idea of how these displace-
ments develop throughout the action of the seismic event,
time-displacement plots are presented in Figure 6 for the cases
of the slope having T= 2.20 s (Michoacán earthquake) and
T= 0.62 s (Loma Prieta earthquake). These periods corre-
spond to the condition where the maximum values of per-
manent displacements were developed.

The results indicate that the permanent displacements
for the three models for Michoacán earthquake starts devel-
oping about the same time and with similar magnitudes, but
the increments depend on the numbers of degrees of free-
dom. Similar patterns are observed for the Loma Prieta earth-
quake. These findings demonstrate that when slope flexibil-

ity is modeled, considering more than one degree of free-
dom, the response of the slope and thus the induced perma-
nent displacements depend on the frequency content of the
input motion.

4.2. Effect of kinetic acceleration

In this case, the corresponding term in Equation 13 was
activated. The displacement spectra are presented in Figure
7 for the three considered models.

Comparing Figures 7 and 5, it becomes evident that the
smoothness of the spectral curves is lost in the models where
kinetic effects are accounted for. In the case of the slopes

Fig. 5. Multi-degree of freedom models without inertial effect.

Fig. 6. Slope displacements with no inertial effects included.

Fig. 7. Multidegree of freedom models with inertial effect.
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with the Michoacán earthquake data a much larger perma-
nent movements were developed. However, the slopes ex-
cited by the Loma Prieta earthquake did not show a signifi-
cant increase in displacements due to inertial effects. The
time-displacement curves of Figures 6 and 8 show that the
displacement patterns throughout the action of the seismic
events are modified when the kinetic forces are considered
for the T= 2.20 s and T= 0.62 s fundamental periods of the
Michoacán and Loma Prieta earthquakes, respectively.

For the Michoacán earthquake it is seen that the ki-
netic acceleration effect shows up at instant times for each
of the models. At this point, it may be argued that the differ-
ences on the time-displacement patterns observed in the re-
sults given above, are mainly due to the variations in the
magnitude and direction of the inertia forces developed at
each of the degrees of freedom. Now, depending on the earth-
quake frequency content these inertial forces may partially
compensate between them or superimpose.

The results also point that as the earthquake intensity
increases, the kinetic effect becomes more significant. Fur-
thermore, the consideration of the kinetics in the dynamic
response of the slopes may cause instabilities of the solu-
tion as depicted in the Figure 7, for the case of three degrees
of freedom system excited by the Michoacán earthquake.
This suggests that the coupling effect of kinetics and multi-
degree of freedom discretizations may lead to inelastic re-
sponses of the slopes. Thus, a new field of study of the re-
sponse of earth structures should be envisioned.

5. CONCLUSIONS

This paper revisits Newmark’s model to evaluate earth-
quake-induced permanent movements in slopes. It attempts
to account more explicitly for the effects of slope flexibility
and kinematic forces caused by a sliding mass.

The results indicate that higher vibration modes of the
slopes may increase or decrease their permanent movements

as compared with the current procedures that include the
flexibility of the slope modeled by a one-degree-of-free-
dom system. This influence is amplified when the kinetic
forces are considered. Furthermore, this additional loading
modify the displacement patterns, which can be critical when
the slopes of an embankment are designed.
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