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RESUMEN
Se usa un código hidrodinámico unidimensional para estudiar el enfriamiento de destellos solares. El enfriamiento del flujo

a través del tubo magnético se calcula para el caso en el cual la atmósfera se encuentra inicialmente en equilibrio térmico con una
temperatura máxima de 107 K. A medida que el sistema se enfría, la evolución de la densidad, velocidad y temperatura se calcula
como función de la altitud para diferentes longitudes del lazo. En este trabajo se usa la función de enfriamiento propuesta por
Hildner (1974) modificada para incluir temperaturas por debajo de 104 K y el efecto de frenado para valores mayores de 106 K. Se
encuentra que el tiempo de enfriamiento aumenta al aumentar la longitud del lazo. Por otro lado, si se considera una fuente de
energía con variación espacial a lo largo del lazo, el tiempo de enfriamiento varía en comparación con el caso en el cual no hay
calentamiento externo. En particular, se observa que éste disminuye a medida que la fuente se concentra siempre más en la base
del lazo.
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ABSTRACT
A one-dimensional hydrodynamics code is used to study the cooling of solar flares. The cooling of the flux tube is calculated

for the case in which the atmosphere is initially in thermal equilibrium with a maximum temperature of about 107 K. As the system
cools, the evolution of the temperature, density, and velocity is calculated as a function of height for different lengths of the loop.
We use the cooling function proposed by Hildner (1974), extended to include temperatures lower than 104 K and the Bremsstrahl-
ung effect for values higher than 106 K. It is found that the cooling time increases as the length of the loop is increased. Further-
more, if a spatially-varying energy source is allowed along the loop length, the cooling time differs from the case with no external
heating. In particular, it is seen to decrease as the input heating concentrates at the base of the loop.

KEY WORDS: Solar flare, Sun atmosphere, hydrodynamics.

study large dynamical events like solar flares. Nagai (1980)
proposed a dynamical model for the formation of soft X-ray
emitting hot loops in solar flares. He considered a solar model
atmosphere in a magnetic loop that changes its state and forms
a hot loop when the flare energy is released in the form of
heat at the top or around the transition region in the loop.
Antiochos and Krall (1979) calculated the cooling process
from the sudden disappearance of the energy source at the
maximum phase of the solar flare; they found that the cool-
ing time was too short to match the observations. Doschek et
al. (1982) extended the work of Antiochos and Krall (1979)
by including the upper chromosphere in their calculations,
and they obtained cooling times of about 232 seconds.
MacNeice (1986) studied numerically the thermal develop-
ment of a heated coronal loop by a transient heating pulse
centred about the loop apex. He showed that it was difficult
to perform calculations continuously from the impulsive to
the gradual phase. A simple method to investigate the cool-
ing mechanisms of flare loops at different temperatures, den-

1. INTRODUCTION

Investigation of the structure and dynamics of the solar
atmosphere, specifically the upper hottest and magnetically
dominated part of the solar corona, is an important and inter-
esting branch of modern astrophysics. Despite significant
progress in solar physics over several decades, a number of
fundamental questions, e. g. concerning the physical mecha-
nisms responsible for coronal heating, solar wind accelera-
tion, and solar flares, still remain to be answered. The solu-
tion to these problems is of fundamental importance to
progress in the fields of solar physics, stellar and magneto-
spheric physics, and laboratory plasma physics, and is needed
to improve our current understanding of solar-terrestrial con-
nections.

Observations from SOHO and TRACE are reviving
interest on studying the dynamics of coronal loops by means
of numerical simulations. Such models have been used to
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sities and loop lengths was proposed by Svetska (1987). Gan
and Fang (1990) studied the gradual phase of a solar flare
with improvements in the radiative loss function, the resolu-
tion on the transition region, and the energy deposition in
the chromosphere by the coronal soft X-ray emission. More
recently, Schmieder et al. (1996a, 1996b) employed similar
models to those of Svestka (1987) by also improving the
radiation loss function. They found longer cooling times and
applied their results to the post-flare loops of 26 June 1992.
Cargill et al. (1995) reexamined the existing theoretical mod-
els of the cooling of flare plasma by assuming that the cool-
ing occurs in two separate phases, with one phase being domi-
nated by conduction and the other by radiation, and derived
a simple analytic expression for the cooling time of the flare.
In this paper, we perform hydrodynamical simulations of the
evolution of a solar flare plasma from the maximum of the
gradual phase. In section 2 we write down the basic equa-
tions and describe the boundary conditions used to solve
them. In section 3 we discuss the main results of our loop
model calculations and in section 4 we summarize the rel-
evant conclusions.

2. BASIC EQUATIONS

The magnetic field plays an important role in the solar
corona, producing in it a complex network of individual loop-
like structures. The coronal plasma β is much smaller than
unity (with typical values of ~10-2) and the velocities are less
than the Alfvén speed. Therefore, it can be assumed that a
strong magnetic field confines the plasma in such a way as
to provide a symmetric loop geometry that channels both the
mass flow and the heat flux. Thus, in a first approximation
motion of the plasma along the confining magnetic field can
be described by solving the governing equations in one-space
dimension. One-dimensional (1D) fluid models are physi-
cally justified because the corona and transition region are
typically at a low β. Under this condition, the plasma dy-
namics is dominated by the magnetic field and so the plasma
macroscopic motion takes place primarily along the mag-
netic field lines. In addition, thermal conduction, due to the
electron diffusion, also occurs along the field lines rather
than across them (Spitzer, 1962). In this way, each plasma
loop can be treated almost independently from the neighbor-
ing ones (Rosner et al., 1978), implying that the thermo-dy-
namical evolution of the coronal plasma along the field lines
is essentially 1D. It is also worth to mention that for most
loops made of magnetically confined plasma the Alfvén travel
time tA = L/νA (where L is the characteristic field line length

and v BA = / 4πρ  the Alfvén speed, with B the magnetic

induction and ρ the plasma mass density) is much shorter
than the plasma evolution time, implying that in most loops
the magnetic field structure does not change appreciably
during the plasma evolution. Thus, unless changes in the
magnetic field occur within a few Alfvén times, each loop
behaves as a rigid pipe filled with coronal plasma.

The scope of loop modelling is rather broad and one
may foresee many new developments that will demand the
use of more advanced numerical techniques and the allow-
ance for two- and three-space dimensions. While 1D models
involve less computational burden and may describe quali-
tatively well the main features of the thermo-dynamical evo-
lution of most loops, they are not able to account for the
plasma-magnetic field interaction that could occur in some
other real loops. For instance, TRACE observations have
clearly shown that loops are composed of many filaments
with a cross-field structure, which, in some cases, may evolve
differently. This will demand studying the evolution of multi-
loop models through the use of magnetohydrodynamics
(MHD) codes in two and three dimensions.

Defining the spatial variable s as the position along a
loop of constant cross-sectional area, the mass, momentum,
and energy conservation equations in one-space dimension,
including radiative cooling and heating, thermal conduction,
and gravity, reduce to
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where ρ is the (mass) density, v is the fluid velocity along a
fixed magnetic field line, T is the temperature, p is the gas
pressure, γ (=5/3) is the ratio of specific heats and κ = κ ||

≈ 10-11 T 5/2 Wm-1 K-1 is the coefficient of thermal conductiv-
ity parallel to the magnetic field (Braginskii, 1965). Equa-
tions (1)-(3) can be solved in closed form for given initial
and boundary conditions once a constitutive relation for the
pressure is specified. Here we assume an equation of state
(EOS) of the form

 p =
Rg

µ
ρT, (4)

where µ denotes the mean molecular weight.

The gravitational acceleration g ||(s) is assumed to de-
pend only on position along the loop and is given by
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where gsolar = 2.7 × 104 cm s-2 is the solar gravity. This form
specifies the component of the gravitational force along a
magnetic field line of semi-circular shape only (see Figure
1). At the summit s = 0, g ||(0)=0, while at the footpoint s = L,
g ||(L) =-gsolar.

The radiative loss-gain function L on the right-hand side
of Equation (3) is in general given by the expression

     L ( , , ) ( ) ( , ),ρ ρT s Q T H s t= −2 (6)

where Q(T) is the optically thin energy loss function and H(s,t)
is the unknown coronal heating term. For the present mod-
els, Q(T) is approximated by a piecewise continuous func-
tion of the form

     Q(T ) = χT α, (7)

where χ and α are radiative loss coefficients (Hildner, 1974;
Rosner et al., 1978), which take constant values within any
particular range of temperature of the piecewise fitting. Fur-
thermore, since the mechanism of coronal heating is not
known, the heating function is assumed to have the form

H s t H s h
L s

sH

( , ) ( ) exp
( )

= = −
−







0 (8)

for 0 ≤ s ≤ L (Rosner et al., 1978). Here h0 is the heating
deposition at the base (s = L) of the loop, sH is the spatial
decay-length of the heating source, and L is half the length
of the loop measured from s = 0 (at the top) to s = L (at the
base). This form of the heating mechanism represents waves
that are damped in the corona so that the amount of energy

supplied to the loop will decay from the base towards the
summit over some spatial scale small compared to the loop
length and specified by the parameter sH.

The heating – which maintains the coronal plasma at
temperatures of the order of million degrees and whose varia-
tion may be responsible for many of the observed changes –
is a fundamental component of any coronal model and its
formulation may depend on the specific problem. It is be-
yond any doubt that the coronal magnetic field coupled with
turbulent motions of the photosphere plays a crucial role in
the coronal heating. However, the question arises of whether
this magnetic energy is dissipated by MHD waves propagat-
ing through the solar atmosphere or by small scale magnetic
reconnection sites throughout the coronal magnetic network.
Also, it has been recognized that the heat input to the corona
is likely to be episodic (e.g., dynamic or time dependent).

To date, two broad-range possibilities for the heating
mechanism have been studied: direct current (DC) dissipa-
tion and alternating current (AC) dissipation. This division
is based on the timescale of response of the solar corona to
the motions of the underlying photosphere (Zirker, 1993).
The driving timescale can either be assumed to be longer
than the Alfvén transit time across a coronal structure (DC)
or shorter (AC). If the deformations of the magnetic field
have timescales comparable to, or shorter than, the time re-
quired for an Alfvén wave to traverse a coronal loop, then
the field behavior is described in terms of waves. The turbu-
lent motions in the convective zones launch waves that propa-
gate through the chromosphere and into the corona. Under
proper conditions, these waves can then deposit part of their
energy into the surrounding chromospheric or coronal plasma
(Ulmschneider, 1996). Other kinds of waves that could be
responsible for the heating are slow mode MHD waves and
longitudinal MHD tube waves with dissipation mechanisms
by shock; fast mode MHD waves dissipated by Landau damp-
ing; Alfvén waves (transverse and torsional) dissipated by
mode-coupling, resonance heating, and compressional vis-
cous heating; and magnetoacoustic surface waves dissipated
by mode coupling, phase mixing, and resonant absorption.
While none of these mechanisms can by itself explain the
total heating, each of them could play an important role in a
particular specific region.

The set of Equations (1)-(4), together with the defini-
tions (5)-(8), can be solved for given initial and boundary
conditions. The initial conditions are specified by setting the
density, velocity, and temperature profiles at t = 0, i.e.,

             ρ ρi = ( , );s 0 v v si = ( , );0 T T si = ( , ),0 (9)

with ν(s,0) usually taken to be zero. In all cases, the bound-
ary conditions are defined by specifying the density and tem-

Fig. 1. Geometry of the semi-circular loop model. Reflection sym-
metry is applied at the summit (s = 0) so that only half of the loop is
represented by the calculations. Boundary conditions are specified
at the base (s = L) of the loop by fixing the density and temperature

there.
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perature at the base of the loop. In particular, we choose con-
stant values of ρ and T at s = L, that is

          T(L, t) = Tb ; ρ(L, t) = ρb , (10)

for t ≥ 0. Given the EOS (4), this is equivalent to set a con-
stant-pressure boundary condition at the footpoint. Here we
restrict ourselves to study only symmetrical loops in which
the location of the summit is held fixed in space and time. As
shown in Figure 1, at s = 0 we set reflective boundary condi-
tions by setting the velocity and all gradients to zero. In this
way, the density and temperature at the summit are evolved
hydrodynamically while keeping their spatial derivatives ex-
actly vanishing there. Also, in order to mimic the presence
of a deep chromosphere, mass is allowed to flow across the
loop base (s = L) by just evolving the fluid velocity there.

We solve Equations (1)-(4) using a one-dimensional,
finite-difference hydrodynamics code based on a modified
version of the second-order accurate, Lagrangian-remap tech-
nique introduced by Lufkin and Hawley (1993). The source
terms in the momentum and internal energy equations are
advanced in time through a multistep solution procedure, in
which each contribution is evaluated separately. For each
substep, the temporal integration is made either explicitly or
implicitly depending on the timestep restrictions for stabil-
ity, and is made second-order accurate by means of a predic-
tor-corrector approach. The Lagrangian solution is then
remapped onto an Eulerian grid, which can be either fixed or
moving. The remap procedure is based on a conservation-
law form of the hydrodynamic equations and advection is
performed using the van Leer (1977) monotonic interpola-
tion scheme. A more detailed account of the code and tests
that have been made to validate its accuracy can be found in
Sigalotti and Mendoza-Briceño (2003).

3. RESULTS

3.1 The effects of varying the length of the loop

In this section, we consider the effects of varying the
length of the loop on the cooling time of the flare for five
loop model calculations with increasing length.

In Figure 2, we show the temperature at the top of the
loop as a function of time for all models considered. In all
cases, the initial equilibrium is left to evolve starting with a
temperature profile with maximum temperature of 107 K at
the summit and h0 = 0 in Equation (8) so that there is no
input of energy. All models behave in a qualitatively similar
manner. Based on the temperature plots of Figure 2, the evo-
lution can be subdivided into four main stages. The first stage
is characterized by a short period in which the top regions
cool down rapidly, due to the effects of thermal conduction,
while approximately maintaining a constant density. As a

result, the coronal plasma just away from the top region is
mainly heated by thermal conduction. This stage lasts until a
small bump occurs in the temperature around T ~3.2x106 K.
For temperatures higher than this, the characteristic cooling
time by conduction is shorter than that by radiative losses
(see section 4). By the end of this stage, a bump in the top
temperature is produced as the slightly hotter plasma away
from the top flows toward it causing a sudden slight increase
of the temperature. Balance of energy is rapidly established
and thereafter the top cools down smoothly. During this sec-
ond stage of the evolution, cooling by radiative losses is par-
tially balanced by heating due to mechanical transport of
hotter material toward the top region, causing it to cool gradu-
ally until temperatures of about 6 x 105 K are reached. At
these values, cooling by thermal conduction does no longer
contribute to counterbalance heating by mechanical trans-
port and therefore the top temperature slightly increases lead-
ing to a second bump. A third stage begins when the charac-
teristic cooling time by radiative losses becomes much shorter
than the other timescales (see section 4, Figure 4), leading to
a rapid decrease of the temperature. As shown in Figure 2,
the temperature drops by almost two orders of magnitude in
a few seconds after which the plasma evolves to a new equi-
librium at chromospheric values. Thereafter, the tempera-
ture keeps constant for the remainder of the evolution (fourth
stage).

As long as the total length of the loop is increased, the
cooling time (first and second stages) increases, with the top

Fig. 2. Time variation of the summit temperature showing the cool-
ing of five solar flare models with loop lengths: 4.0 x 109 cm (curve
1), 5.5 x 109 cm (curve 2), 8.0 x 109 cm (curve 3), 1.1 x 1010 cm
(curve 4), and 1.4 x 1010 cm (curve 5). For all models, the evolution
has been obtained setting h0 = 0 in Equation (8) (case with no input

heating).
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region achieving slightly lower temperatures in loops of
shorter length. This is easily understandable because the coun-
terbalancing effects of heating due to mechanical transport
takes longer in loops of increasing length. In particular, when
the length of the loop is of the order of 4 x 109 cm, the flare
cools down in about 1700 s, whereas for a length of the or-
der of 1.4 x 1010 cm the cooling time increases to about 3000
s. We note that the cooling time also depends on whether the
operating cooling mechanism is conductive or radiative. At
high temperatures (~106 K), the energy is mainly dissipated
by thermal conduction. On the contrary, when the plasma
reaches lower values of the temperature, the dominant mecha-
nism is the loss of energy by radiation.

3.2 The effects of heating

In this section, we describe the hydrodynamical evolu-
tion of five more loop models using the heating function as
given by Equation (8), with h0 =10-3 erg cm-3 s-1. All models
start from equilibrium conditions, sharing the same length
(L =1.4 × 1010 cm) and differing only in the spatial energy
distribution through the decay length of the heating sH. In
particular, we consider values of sH / L= 0.01, 0.05, 0.1, 0.5
and 1081. A value as high as 1081 is used to mimic a uniform
heating (sH → ∞) along the loop. On the other hand, a value
as low as 0.01 represents models in which the heating is more
concentrated at the base of the loop.

The results of the evolutions in terms of the time varia-
tion of the top temperature are displayed in Figure 3. Those

models starting with a more localized heating source (i.e.,
0.01 ≤ sH / L ≤ 0.1) behave quite similarly as shown by curves
1-3 of Figure 3. The time dependence of the top temperature
as well as the cooling time resulting for these three models
are also quite similar to those of the longest loop shown in
Figure 2 (curve 5) for the case of no input energy. As the
heating source becomes less localized (sH / L = 0.5, curve 4)
or even uniformly distributed along the loop (sH → ∞, curve
5) more heating is allowed into the system and as a conse-
quence the plasma cools down considerably more slowly than
in cases where the heating is negligible. This is clearly seen
in Figure 3, where after the first bump in the temperature
variation, the top region evolves in close thermal equilib-
rium for more than 2000 s (curve 4) and 3000 s (curve 5).
Thereafter, catastrophic cooling occurs in both cases as cool-
ing due to radiative losses dominates the evolution, causing
the coronal plasma to reach chromospheric temperatures in
a few seconds.

The results indicate that the cooling time increases from
less than 2000 s, when the heating is negligible, to more than
4000 s, when the value of sH / L is high enough that the heat-
ing can be considered to be uniform along the loop. As ex-
pected, compared with the no heating case (curve 5 of Fig-
ure 2), the cooling time also increases when the heating is
more or less distributed along the loop length.

4. DISCUSSION

In this paper we have used numerical simulations to
investigate the cooling time for the gradual phase of a solar
flare, starting from equilibrium initial conditions. The effects
of varying the length of the loop on the cooling time were
first considered. The results imply that the cooling time in-
creases as long as the length of the loop is increased. During
this process, the coronal part cools mainly by thermal con-
duction, while the chromospheric part does it by radiative
losses. This can be easily assessed by estimating both the
radiation and conductive characteristic cooling times directly
from Equation (3). Under the assumption that one mecha-
nism dominates over all other processes, we obtain the fol-
lowing expressions

τ
γ ρ χ αrad =
−

p
T( )

,
1 2 (11)

and

τ
γ κcond =
−

pL
T

2

1 21( )
,/ (12)

for the radiation and conductive timescales, respectively. The
variation of these timescales with temperature is shown in
Figure 4 for the loop model evolution shown in Figure 2
(curve 4), with length L = 1.1 x 1010 cm. We see that at tem-

Fig. 3: Time variation of the summit temperature showing the cool-
ing of five solar flare models of length 1.4 x 1010 cm as obtained
using the heating function given by Equation (8) with h0=10-3 erg
cm-3 s-1 and varied values of the decay length of the heating: (curve
1), 0.05 (curve 2), 0.1 (curve 3), 0.5 (curve 4), and ∞ (curve 5).
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peratures T > 3.9 x 106 K, thermal conduction is the domi-
nating cooling mechanism, while for lower temperatures en-
ergy losses by radiation dominates over conduction. In par-
ticular, in the range of temperatures between 1.0 x 104 and
5.0 x 105 K, the radiation cooling time becomes shorter than
about 100 s, reaching a minimum value of ≈0.4 s when T ≈
7.9 x 104 K. This explains the catastrophic cooling to chro-
mospheric values seen in Figures 2 and 3. Similar curves to
those shown in Figure 4 are also obtained for all other evolu-
tions displayed in Figure 2.

When an energy input is included the cooling time be-
comes longer as more heating goes into the system. While
for these calculations we have used a coronal heating func-
tion that depends only on the spatial variable, it is important
to remark that excluding the heating in model calculations
of the cooling of solar flares can lead to a mis-interpretation
of the observations. For instance, flares are also observed in
other stars and information about their length comes prima-
rily from their estimated cooling time. In this respect, one
important implication of the present results is that the cool-
ing time can also be affected by the heating. So more work is
needed in this direction perhaps using different forms of the
heating in order to discern more precisely how the energy
input may affect the cooling time.
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