Hydraulic permeability prediction from attenuation in an oil well using the squirt flow model
Contenido principal del artículo
Resumen
Se presenta una metodología práctica para estimar la permeabilidad hidráulica a partir de la atenuación de ondas a frecuencias sónicas utilizando el modelo poroelástico de flujo squirt asociado al mecanismo que engloba la interacción entre un sólido y un fluido en un pozo petrolero. La metodología consta de cuatro etapas: a) la evaluación petrofísica, b) el modelado de física de rocas estático que incluye su diagnóstico, c) la estimación de atenuaciones de ondas usando un esquema de inversión para optimizar el parámetro crítico Z del modelo de flujo squirt, d) la correlación entre las atenuaciones y el parámetro Z con las permeabilidades hidráulicas obtenidas mediante registros de pozos convencionales y análisis de núcleos disponibles. Las correlaciones son el medio para establecer la predicción de permeabilidades hidráulicas a partir de datos sónicos y ultrasónicos. Los resultados obtenidos sugieren que el parámetro Z es bajo mientras que las atenuaciones son altas cuando el medio presenta alta porosidad y permeabilidad. En la metodología, se propone el esquema de inversión para encontrar el parámetro Z, la dispersión de la velocidad y las atenuaciones en términos de los de los factores de calidad inver- sos, respectivamente para las ondas, P(QP –1) y S(QS –1) utilizando la técnica de recocido simulado. Los resultados de la aplicación de la metodología son validados con datos de núcleos (saturación de agua, porosidad y permeabilidad) y el análisis mineralógico de secciones delgadas mediante la técnica de conteo de puntos. Esta metodología promete un medio para predecir la permeabilidad hidráulica a partir de velocidades sónicas y ultrasónicas en un pozo.
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Abbot, D. (2014). Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst. John Wiley & Sons, Inc., Indianapolis, Indiana.
Akbar, N., Dvorkin, J., Nur, A. (1993). Relating P-wave attenuation to permeability. Geophysics 58(1), 20-29. doi: https://doi.org/10.1190/1.1443348
Ávila-Carrera, R., Spurlin, H. J., Valle-Molina, C. (2010). Simulating elastic wave propagation in boreholes: Fundamentals of seismic response and quantitative interpretation of well log data. Geofísica Internacional, 50(1), 57-76. doi: https://doi.org/10.22201/igeof.00167169p.2011.50.1.122
Avseth, P., Jorstad, A., Van, W. A-J., Mavko, G. (2009). Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones. The Leading Edge, 28, 98-108. doi: https://doi.org/10.1190/1.3064154.
Ayan, C., Hafez, H., Hurst, S., Kuchuk, F., O’Callaghan, A., Peffer, J., Pop, J., Zeybek, M. (2001). Characterization Permeability with Formation Tester. Oilfield Review, 13(3), 2-23.
Ba, J., Yuan, Z., Carcione, J. M., Guo, Y., Zhang, L., Sun, W. (2015). Wave propagation and attenuation in heterogeneous reservoir rocks. En A. Ba, J., Du, Qizhen., Carcione, José M., Zhang, H., Müller, T. M. (Eds), Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs. (pp. 9-43). Elsevier.
Batzle, M., Wang Z. (1992). Seismic properties of pore fluids. Geophysics, 57, 1396-1408. doi: https://doi.org/10.1190/1.1443207.
Blangy, J. D. (1992). Integrated seismic lithologic interpretation: The petrophysical basis. [PhD. Dissertation]. Stanford University.
Byberg, O. (1998). Conventional Core Analysis, Well 15/9-19A, (Report 10177-97). Norway.
Chapman, M., Zatsepin, S. V., Crampin, S. (2002). Derivation of a microstructural poroelasticity model. Geophysical Journal International, 151(2), 427-451. doi: https://doi.org/10.1046/j.1365-246X.2002.01769.x
Cleary, M.P., Lee, S.-M., Chen, I.-W. (1980). Self-Consistent Techniques for Heterogeneous Media. Journal of the Engineering Mechanics Division. 106(5), 861-887. doi: https://doi.org/10.1061/JMCEA3.0002643
Dandekar, D. P. (1968). Pressure Dependence of the Elastic Constants of Calcite. Physical Review Journal Archive, 172, 873-877. doi: https://doi.org/10.1103/PhysRev.172.873
Dvorkin J., Gutierrez M. A., Grana D. (2014). Seismic reflections of rock properties, (1 ed.) Cambridge University Press, United Kingdom.
Dvorkin, J., Mavko, G., Nur, A. (1995). Squirt flow in fully saturated rocks. Geophysics, 60(1), 97-107. doi: https://doi.org/10.1190/1.1443767
Dvorkin, J., Nolen-Hoeksema, R., Nur, A. (1994). The squirt-flow mechanism: Macroscopic description. Geophysics, 59(3), 336-490. doi: https://doi.org/10.1190/1.1443605
Dvorkin, J., Nur, A. (1993). Dynamic poroelasticity: A unified model with the squirt and the Biot mechanism. Geophysics, 58, 524-533. doi: https://doi.org/10.1190/1.1443435
Dvorkin, J., Nur, A. (1996). Elasticity of high-porosity sandstone: Theory for two North Sea data sets. Geophysics, 61, 1363-1370. doi: https://doi.org/10.1190/1.1444059
Gassmann, F. (1951). Über die Elastizität poröser Medien.Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96, 1-23.
Han, D.-H., Nur, A., Morgan, D. (1986). Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51, 2093-2107. doi: https://doi.org/10.1190/1.1442062
Li, H.-B., Zhang, J.-J., Yao, F.-C. (2013). Inversion of effective pore aspect ratios for porous rock and applications. Chinese Journal of Geophysics, 56(1), 43-51. doi: https://doi.org/10.1002/cjg2.20004
Lunde, B. (2013). Diagenesis and Reservoir Quality of the Hugin Formation Sandstones in the North Sea, a Petrographical Approach. [Master thesis]. Norwegian University of Science and Technology.
Mavko, G., Mukerji, T., Dvorkin, J. (2009). The Rock Physics Handbook. Tools for Seismic Analysis of Porous Media. (2 Ed.) Cambridge University Press, Cambridge.
Mindlin, R. D. (1949). Compliance of Elastic Bodies in Contact. Journal of Applied Mechanics 16(3), 259-268. doi: https://doi.org/10.1115/1.4009973
Müller, T., Gurevich, B., Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review. Geophysics, 75(5), 75A147-75A164. doi: https://doi.org/10.1190/1.3463417
Nolen-Hoeksema, R. (2014). Defining and Determining Permeability. Oilfield Review, 26(3), 63-64.
Norris A.N. (1985). A differential scheme for the effective moduli of composites. Mechanics of Materials 4(1), 1-16. doi: https://doi.org/10.1016/0167-6636(85)90002-X
Østby, J. M, Frafjord, D., Tveit, L. (1998). Final Well Report well 15/9-19A, (ReportPL 046). Norway.
Palmer, I. D., Traviolia, M. L. (1980). Attenuation by squirt flow in undersaturated gas sand. Geophysics 45(12), 1780-1792. doi: https://doi.org/10.1190/1.1441065
Pride, S. R., Berryman, J. G., Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research Solid Earth,109(B1), 1-19. doi: https://doi.org/10.1029/2003JB002639
Ringheim, M. (1999). Special Core Analysis, Sleipner, Well 15/9-19A, (Report30131/24-99). Norway.
Schlumberger (2014). DSI Dipole Shear Sonic Imager. [Dipole sonic imager]. Schlumberger.
Shapiro, S. A., Müller, T. M. (1999). Seismic signatures of permeability in heterogeneous porous media. Geophysics, 64, 99-103. doi: https://doi.org/10.1190/1.1444536
Soleimani, B., Moradi, M., Ghabeishavi, A. (2018). Stoneley Wave Predicted Permeability and Electrofacies Correlation in the Bangestan Reservoir, Mansouri Oilfield, SW Iran. Geofísica Internacional, 57(2), 107-120. https://doi.org/10.22201/igeof.00167169p.2018.57.2.2040
Statoil (1998a). Micro photographs thin sections, well: 15/9-19A, p. 90
Statoil (1998b). Rock Mechanical Testing, Triaxial tests on sandstone, well 15/9-19A, p. 60.
Tiab, D., Donaldson, E.C. (2004). Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, (2 Ed.). Elsevier.
Tittman, J. (1990). Shear Wave Logging with Dipoles. Oilfield Review 2, 9-12.
Tjomsland, T. (1998). Recombination and PVT analysis core flooding study, well 15/9-19A, (Report STAT617), p. 43. Norway.
Vollset, J., Doré A. G. (1984). A revised Triassic and Jurassic lithostratigraphic nomenclature for the Norwegian North Sea. NPD-Bulletin, 3, 1-53.
White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2), 224-232. doi: https://doi.org/10.1190/1.1440520
Zimmerman, R.W. (1991). Elastic moduli of a solid containing spherical inclusions. Mechanics of Materials,12(1), 17-24. doi: https://doi.org/10.1016/0167-6636(91)90049-6