Vol. 60 No. 4 (2021): Geofísica Internacional
Articles

Magnetic parameters and palaeoclimate: A case study of loess deposits of North-East of Iran

Fereshteh Mahdipour Haskouei
M.Sc. of Research Institute for Earth Sciences Geological Survey of Iran, Tehran, Iran

Published 2021-10-01

Keywords

  • Loess Magnetism,
  • Magnetic parameters,
  • Palaeoclimate,
  • Interglacial/glacial periods,
  • Neka,
  • Iran
  • ...More
    Less

How to Cite

Alimohammadian, H., Haskouei, F. M., & Sabouri, J. (2021). Magnetic parameters and palaeoclimate: A case study of loess deposits of North-East of Iran. Geofísica Internacional, 60(4), 280-293. https://doi.org/10.22201/igeof.00167169p.2021.60.4.1949

Abstract

Environmental magnetism techniques enable us to reconstruct paleoclimate conditions in some deposition such as losses. The  magnetic properties  of  minerals  are  used  as  proxies  for  environmental  changes. For this study, loess/paleosol sequence of Kolet section at Neka, north-east of Iran were magnetically investigated. We applied environmental magnetism methods, to reconstruct paleoclimate changes. We investigated relationship between paleoclimate changes and environmental magnetism proxies like magnetic susceptibility (?) variation. The laboratory techniques indicated the presence of main factor of magnetic property in loess/paleosol sequence, such as magnetite, maghemite and etc. We also estimated magnetically parameters (like SIRM, HIRM and etc.) to confirm concentrations of both aeolian and pedogenic particles versus variations of magnetic susceptibility enhancement. The ? values show prominent peaks for the three well developed soil and paleosol horizons, Recent Soil (S0), Upper Paleosol (S1) and Lower Paleosol (S2); which refer to warmer and wetter conditions. As result, we concluded that the increase/decreasing of magnetic susceptibility is coinciding with palaeosol/loess sequence, and probably with humid/arid conditions. Moreover, variations of magnetic susceptibility versus lithological column of Kolet section enabled us to recognize paleoclimatically periods known as interglacial/glacial cycles. The obtained  magnetic  data  indicate  that  during over  the  past  50  ka,  there  have  been  at  least  two glacial/interglacial periods and since last 20 ka, there was no main glaciation occurrence, in the study area.

References

  1. • Akram, H., Yoshida, M., & Ahmad, M.N., (1998). Rock magnetic properties of the ‎late Pleistocene Loess‎–‎Paleosol deposits in Haro River area, Attock basin, Pakistan: Is ‎magnetic susceptibility a proxy measure of paleoclimate. Earth Planets Space, Vol. 5, pp. 129‎–‎139
  2. • Barbier, R., (1960). Decouverte de l'effet d’une ancienne vallée´de remblai´ dans le cours infe´rieur du Se´fid-Roud (versant nord del’Elbourz, Iran). Comptes Rendus de l’Academie des Sciences Paris 250, 1097–1098.
  3. • Bloemendal, J., J. W. King, F. R. Hall, and S. J. Doh, (1992). Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology, J. Geophys. Res., 97, 4361–4375.
  4. • Bobek, H. (1937): Die Rolle der Eiszeit in Nordwestiran. – Z. Gletscherk., 25: 130-183, 13 Abb., 17 Photos; Berlin Zehlendorf.
  5. • Dekkers, M.J., 1997- Environmental magnetism: an introduction. Geology 76, 275‎–‎320, Mijnbouw.
  6. • Deng, C., Zhu, R., Verosub, K.L., Singer, M.J., and Vidic, N.J., (2004). Mineral ‎magnetic properties of loess/paleosol couplets of the central loess plateau of China ‎over the last 1.2 Myr. Journal of Geophysical Research, Vol. 109, pp. 1‎–‎109
  7. • Ehlers, E. (1971): Sudkaspisches Tiefl and (Nordiran) und Kaspisches Meer. Beitrage zuihrer Entwicklungsgeschichte im Jung- und Postpleistozan. – Tubinger Geogr. Stud., 44, 184 S., 54 Fig., 29 Photos; Tubingen.
  8. • Frechen, M., Dodonov, A., (1998). Loess chronology of the middle and upper Pleistocene in Tajikistan. International Journal of Earth Sciences 87, 2–20.
  9. • Frechen, M., Oches, E.A., Kohfeld, K.E., (2003). Loess in Europe – mass accumulation rates during the last glacial period. Quaternary Science Reviews 22, 1835–1857.
  10. • Frechen, M., Zander, A., Zykina, V., Boenigk, W., (2005). The loess record from the section at Kurtak in Middle Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 228, 228–244.
  11. • Frechen, M., Kehl, M., Rolfa, C., Sarvati, R., Skowronek, A., (2009). Loess chronology of the Caspian Lowland in Northern Iran. Quaternary International 198, 220–233.
  12. • Heller, F., Liu, T.S., (1984). Magnetism of Chinese Loess deposits. Geophysical Journal of the Royal Astronomical Society 77, 125.
  13. • Heller, F., Liu, X.M., Liu, T.S., Xu, T.C., (1991). Magnetic-susceptibility of Loess in China. Earth and Planetary Science Letters 103, 301–310
  14. • Jin, C., and Liu, Q., (2011). Remagnetization mechanism and a new age model for L9 in Chinese loess. Physics of the Earth and Planetary Interiors. doi: 10.1016/j.pepi.2011.03.010
  15. • Kabirnia, A. R., Asadi, A., Khan Nazari, N. E., Vakili, F, Bahremand, M., Masoumi, R. And Qomishi, A., (2003). 1:100,000 scale geology map of Sari, Geological Survey of Iran (in Persian).
  16. • Karimi, A., Frechen, M., Khademi, H., Kehl, M., Jalalian, A., (2009). Chronostratigraphy of loess deposits in northeast Iran, Quaternary International, 1–9. doi:10.1016/j.quaint.2009.08.002
  17. • Kehl, M., Sarvati, R., Ahmadi, H., Frechen, M., Skowronek, A., (2005). Loess ‎‎paleosol‎–‎sequences along a climatic gradient in Northern Iran. Eiszeitalter und‎ Gegenwart 55, 149‎_173.‎
  18. • Kehl, M., Sarvati, R., Ahmadi, H., Frechen, M., Skowronek, A., (2006). Loess/paleosol-sequences along a climatic gradient in Northern Iran. Eiszeitalter und Gegenwart 55, 149–173.
  19. • King, J.W., and Channell, J.E.T., (1991). Sedimentary magnetism, environmental ‎magnetism, and magnetostratigraphy. Review Geophysical, Vol. 34, pp. 358‎–‎370
  20. • Liu, T. S. et al., (1985). Loess and the Environment. China Ocean Press, Beijing, 1-251.
  21. • Liu, Q.S., Jackson, M.J., Yu, Y., Chen, F., Deng, Ch., and Zhu R., (2004c). ‎‏‏Grain ‎size distribution of pedogenic magnetic particles in Chinese loess/paleosols‏. Geophysical Research Letters, 31, 506‎–‎‎‎514‎
  22. • Machalett, B., Frechen, M., Hambach, U., Oches, E.A., ZÖller, L., Markovic, S.B., (2006). The loess sequence from Remisowka (northern boundary of the Tien Shan Mountains, Kazakhstan) – part I: luminescence dating. Quaternary International 152/153, 192–201.
  23. • McLaren, P. (1980). "An Interpretation of Trends in Grain Size Measures". Journal of Sedimentary Petrology 51(2), 611-623.
  24. • Maher, B. A. (1988). Magnetic properties of some synthetic sub-micron magnetites. Geophys. J., 94, 83 – 96.
  25. • Maher, B.A., (1998). ‎‏"‏Magnetic properties of modern soils and Quaternary loessic ‎paleosols‏:Paleoclimatic implications", Palaeogeography Palaeoclimatology Palae¬oecology, Vol. 137, 25‎–‎55‎.
  26. • Maher, B. A., (2011). ‎‏‏The magnetic properties of Quaternary Aeolian dusts and ‎sediments, and their Palaeoclimatic significance‏‏‎. Aeolian Research, 145-387.
  27. • Roberts, A.P., Cui, Y., and Verosub, K.L., (1995), Wasp‎–‎waisted hysteresis loops: ‎Mineral magnetic characteristics and discrimination of components in mixed magnetic ‎systems. Journal of Geophysical Research, Vol. 100, pp. 17909‎–‎924
  28. • Robinson, S. G., (1986). The late Pleistocene paleoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements, Phys. Earth Planet. Inter., 42, 22–47.
  29. • Stahl, A.F.v. (1923): Zur Frage der Losbildung. – Z. dt. geol. Ges., 74: 320-325; Stuttgart.
  30. • Szabo, E.; and Cioppa, M. T. (2004). Saturation Isothermal Remanent Magnetization Crossover Plots: Case Study for a Bimodal Population of Low and High Coercivity Magnetic Minerals. American Geophysical Union, Spring Meeting 2004, abstract id. GP34A-06.
  31. • Tietze, E. (1877): Uber Lossbildung und uber die Bildung von Salzsteppen. – Verh. k. u. k. geol. Reichsanstalt, 15: 264-268; Berlin.
  32. • Verosub, K.L., and Roberts, A.P., (1995), Environmental magnetism: Past, present, ‎and future. Journal of Geophysical Research, Vol. 100, pp. 2175‎–‎2192‎