Vol. 60 No. 1 (2021): Geofísica Internacional

Empirical Relationship for Assessing the Near-Field Horizontal Coseismic Displacement Using GPS Seismology Data

Ryad Darawcheh
Syrian Virtual University, Damascus, P.O. Box 35329, Syria Department of Geology, Atomic Energy Commission of Syria, Damascus, Syria
Riad Al Ghazzi
Syrian Private University, Damascus, Syria
Mohamad Khir Abdul-wahed
Department of Geology, Atomic Energy Commission of Syria, Damascus, Syria

Published 2021-01-01


  • GPS coseismic displacement,
  • GPS seismology,
  • multi regression analysis,
  • Dead Sea fault system

How to Cite

Darawcheh, R., Al Ghazzi, R., & Abdul-wahed, M. K. (2021). Empirical Relationship for Assessing the Near-Field Horizontal Coseismic Displacement Using GPS Seismology Data. Geofísica Internacional, 60(1), 31-50. https://doi.org/10.22201/igeof.00167169p.2021.60.1.2025


In this research, a data set of horizontal GPS coseismic displacement in the near-field has been assembled around the world in order to investigate a potential relationship between the displacement and the earthquake parameters. Regression analyses have been applied to the data of 120 interplate earthquakes having the magnitude (Mw 4.8-9.2). An empirical relationship for prediction near-field horizontal GPS coseismic displacement as a function of moment magnitude and the distance between hypocenter and near field GPS station has been established using the multi regression analysis. The obtained relationship allows assessing the coseismic displacements associated with some large historical earthquakes occurred along the Dead Sea fault system. Such a fair relationship could be useful for assessing the coseismic displacement at any point around the active faults.


  1. Abdul-Wahed, M.K., Asfahani, J. (2018) The recent instrumental seismicity of Syria and its implications. Geofísica Internacional 57(2), 121-138.
  2. Abdul-Wahed M.K., Asfahani J., Al-Tahan I. (2011) A combined methodology of multiplet and composite focal mechanism techniques for the identification of the seismological active zones in Syria. Acta Geophysica, 59, no.5, 967-992. https://doi.org/10.2478.
  3. Abdul-Wahed M.K. and Al-Tahan I. (2010) Preliminary outlining of the seismological active zones in Syria. Annals of Geophysics, 53, 4, 1-9.
  4. Agnew, D.C., S. Owen, Z. Shen, G. Anderson, J. Svarc, H. Johanson et al. (2002) Coseismic displacements from the Hector Mine, California, earthquake: results from survey-mode Global Positioning System measurements. Bulletin of the Seismological Society of America, 92, 1355-1364.
  5. Altiner, Y., W. Söhne, C. Güney, J. Perlt, R. Wang and M. Muzli (2013) A geodetic study of the 23 October 2011 Van, Turkey earthquake. Tectonophysics, 588, 118-134.
  6. Ambikapathy, A., J.K. Catherine, V.K. Gahalaut, M. Narsaiah, A. Bansal and P. Mahesh (2010) The 2007 Bengkulu earthquake, its rupture model and implications for seismic hazard. Journal of Earth System Science, 119(4), 553-560.
  7. Ambraseys, N.N. and C.P. Melville (1988) An analysis of the eastern Mediterranean earthquake of 20 May 1202. Paper presented at the Symposium on History of Seismography and Earthquakes of the World, W.H. Lee (editor), (181-200). San Diego, California.
  8. Ambraseys, N.N. and M. Barazangi (1989) The 1759 earthquake in the Bekaa Valley: implications for earthquake hazard assessment in the eastern Mediterranean region. Journal of Geophysical Research, 94(B4), 4007-4013.
  9. Ambraseys, N.N. and C.C. Finkel (1993) Material for the investigation of the seismicity of the Eastern Mediterranean region during the period 1690-1710. Paper presented at the Conference on Materials of the CEC Project: review of Historical Seismicity in Europe, M. Stucchi (ed.), (173-194), Milano: CNR.
  10. Ambraseys, N.N., C.P. Melville and R.D. Adams (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. King Abdulaziz City for Science and Technology and Cambridge University Press.
  11. Anzidei, M., P. Paldi, A. Galvani, A. Pesci, I. Hunstad and E. Boschi (1999) Coseismic displacement of the 27th September Umbria – Marche (Italy) earthquakes detected by GPS: campaign and data. Annali Di Geofisica, 42(4), 597-607.
  12. Arnadottir, Th., J. Beavan and Ch. Pearson (1995) Deformation associated with the 18 June 1994 Arthur' Pass earthquake, New Zealand. New Zealand Journal of the Geology and Geophysics, 38(4), 553-558.
  13. Árnadóttir, Th., S. Hreinsdóttir, G. Gudmundsson, P. Einarsson, M. Heinert and Ch. Völksen (2001) Crustal deformation measured by GPS in the south Iceland seismic zone due to two large earthquake in June 2000. Geophysical Research Letters, 28(21), 4031-4033.
  14. Avallone, A., M. Marzario, A. Cerilla, A. Piatanesi, A. Rovelli, C. Di Alessandro et al. (2011) Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L'Aquila (central Italy) event. Journal of Geophysical Research, 116. B02305. Doi: 10.1029/2010JB007834.
  15. Baer, G., D. Sandwell, S. Williams and Y. Bock (1999) Coseismic deformation associated with the November 1995, Mw=7.1 Nuweiba earthquake, Gulf of Elat (Aqaba), detected by synthetic aperture radar interferometry. Journal of Geophysical Research, 104(B11), 25221-25232.
  16. Barnhart, W.D., J.R. Murray, S.-H. Yun, J.L. Svarc, S.V. Samsonov, E.J. Fielding et al. (2015) Geodetic constraints on the 2014 M 6.0 south Napa earthquake. Seismological Research Letters, 86(2A), 335-343.
  17. Beavan, J., E. Kendrick, R. McCaffrey, M. Bevis and F. Latu (2006) Coseismic deformation of the May 2006 M 7.9 Tongo earthquake. American Geophysical Union, Fall Meeting, 2006. abstract id. T21F-04
  18. Beavan, J., S. Samsonov, M. Motagh, L. Wallace, S. Ellis and N. Palmer (2010) The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model. Bulletin of the New Zealand Society for earthquake Engineering, 43(4), 228-235.
  19. Bejar Pizarro. M., D. Carrizo, A. Socquet, R. Armijo (2010) Asperities, Barriers and transition zone in the north Chile seismic gap: state of the art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Paper presented at the Proc. "Fringe 2009 Workshop, Frascati, Italy.
  20. Bekri, E., H.R. Nankali and Z. Rahimi (2015) Coseismic displacement of the earth crust using permanent GPS stations in Ahar-Varzeqan earthquake 2012. Geosciences, 24(95), 105-110.
  21. Bernard, P., P. Briole, B. Meyer, H. Lyon-Caen, J.-M. Gomez, C. Tiberi et al. (1997) The Ms=6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Cornith rift. Journal of Seismology, 1, 131-150.
  22. Bilich, A., J.F. Cassidy and C. Larson (2008) GPS Seismology: application to the 2002 Mw 7.9 Denali fault earthquake. Bulletin of the Seismological Society of America 98(2), 593-606. Doi: 10.1785/0120070096.
  23. Blewitt, G., M.B. Heflin, K.J. Hurst, D. C. Jefferson, F.H. Webb and J.F. Zumberege (1993) Absolute far-field displacements from the 28 June 1992 Landers earthquake sequence. Nature, 361, 340-342.
  24. Branzanti, M., G. Colosimo, M. Crespi and A. Mazzoni (2013) GPS-near-real-time coseismic displacements for the great Tohoku-Oki earthquake. IEEE Geoscience and Remote Sensing Letters, 10(2), 372-376.
  25. Brockmann, E., R. Hug, D. Schneider and Th. Signer (2002) Geotectonics in the Swiss Alps using GPS. In J.A. Torres and H. Hornik (editors), Subcommission for the European Reference Frame (UUREF), publication No. 11, (109-117).
  26. Bürgmann, R., M.E. Ayhan, E.J. Fielding, T.J. Wright, S. McClusky, B. Aktug et al. (2002) Deformation during the 12 November 1999 Düzce, Turkey, earthquake, from GPS and InSAR data. Bulletin of the Seismological Society of America, 92, 1, 161-171.
  27. Calais, E. (2016) The Haiti 2010 earthquake.http://www.geologie.ens.fr/~ecalais/research/the-january-12th-2010-haiti/the-haiti-2010-earthquake.html
  28. Calais, E. (2004) GPS campaign in the Dominican Republic, October 12-18, 2003: data analysis and preliminary results, Technical Report. http://web.ics.purdue.edu /~ecalais/projects/caribbean/dr2003/
  29. Calais, E., A. Freed, G. Mattioli, F. Amelung, S. Jónsson, P. Jansma et al. (2010) Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nature Geoscience, 3, 794-799.
  30. Canitano, A., Y-Ju Hsu, H-Ming Lee, A.T. Linde and S. Selwyn (2015) Near-field strain observations of the October 2013 Ruisui, Taiwan, earthquake: source parameters and limits of very short-term strain detection. Earth, Planets and Space, 67(125). https://doi.org/10.1186/s40623-015-0284-1
  31. Cheloni, D., E. Serpelloni, R. Devoti, N. D'Agostino, G. Pietrantonio, F. Riguzzi et al. (2016) GPS observations following the 2016, August 24, Mw 6 Amatrice earthquake (central Italy): data, analysis and preliminary fault model. Annals of Geophysics, 59, Fast Track 5. Doi: 10.4401/ag-7269.
  32. Chen, H.Y., L.Ch. Kuo and S. Yu (2004) Coseismic movement and seismic ground motion associated with the 31 March 2002 off Hualien, Taiwan, earthquake. Terrestrial, Atmospheric and Oceanic Sciences Journal, 15(4), 683-695.
  33. Chen, H.Y., S.B. Yu, L.C. Kuo and C.C, Liu (2006) Coseismic and postseismic surface displacements of the 10 December 2003 (Mw 6.5) Chengkung, eastern Taiwan, earthquake. Earth Planets Space, 58, 5-21.
  34. Chen, H.Y., J.C. Lee, L.C. Kuo, S.B. Yu and C.C. Liu (2008) Coseismic surface GPS displacement and ground shaking associated with the 2006 Pingtung earthquake doublet, offshore southern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 19(6), 683-696.
  35. Chen, H.Y., Y.J. Hsu, J. Ch. Lee, S. Yu, L. Kuo, Y. Jiang et al. (2009) Coseismic displacements and slip distribution from GPS and leveling observations for the 2006 Peinan earthquake (Mw 6.1) in southeastern Taiwan. Earth, Planets and Space, 61, BF03352913.
  36. Clarke, P.J., D. Paradissis, P. Briole, P.C. England, B.E. Parsons, H. Billiris et al. (1997) Geodetic investigation of the 13 May 1995 Kozani-Grevena (Greece) earthquake. Geophysical Research Letters, 24(6), 707-710.
  37. Darawcheh, R., M.Kh. Abdul-wahed and A. Hasan (2019) The 13th-August-1822 Aleppo earthquake: Implications for the seismic hazard assessment at the Antakia triple junction. N. Sundararajan et al. (eds.), Springer Nature Switzerland, 179-181.
  38. De Chabalier, J.B., J.C. Ruegg, R. Armijo, C. Delacourt, B. Fruneau, D. Massonnet et al. (1997) Modelling the deformation related to the Mw = 8.1 subduction earthquake of northern Chile (1995) using SAR interferometry and GPS measurements. Eos, Transactions, American Geophysics Union, Fall Meeting, F696.
  39. Ding, K., J.T. Freymueller, Q. Wang and R. Zou (2015) Coseismic and early postseismic deformation of the 5 January 2013 Mw 7.5 Craig earthquake from static and kinematic GPS solutions. Bulletin of the Seismological Society of America, 105(2B), 1153-1164.
  40. Duputel, Z., J. Jiang, R. Jolivet, M. Simons, L. Rivera, J.-P. Ampuero et al. (2015) The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophysical Research Letters, Vol. 42, Issue 19, 7949-7957. doi:10.1002/2015GL065402.
  41. Ellis, A.P., Ch. DeMets, P. Briole, E. Molina, O. Flores, J. Rivera et al. (2015) Geodetic slip solutions for the Mw = 7.4 Champerico (Guatemala) earthquake of 2012 November 7 and its postseismic deformation. Geophysical Journal International, 201(2), 856-868.
  42. European Marine Observation and Data Network (EMODnet). http://www.emodnet.eu/
  43. Fernandes, R.M.S., J.M. Miranda, J. Catalão, J.F. Luis, L. Bastos and B.A.C. Ambrosius (2002) Coseismic displacements of the Mw = 6.1, July 9, 1998, Faial earthquake (Azores, north Atlantic). Geophysical Research Letters, 29(16), 21-1 to 21-4.
  44. Frontera, T., A. Concha, P. Blanco, A. Echeverria, X. Goula, R. Arbiol et al. (2012) DInSAR coseismic deformation of the May 2011 Mw 5.1 Lorca earthquake (southeastern Spain). Solid Earth, 3, 111-119.
  45. Ganas, A., E. Serpelloni, G. Drakatos, M. Kolligri, I. Adamis, Ch. Tsimi et al. (2009) The Mw 6.4 SW-Achaia (western Greece) earthquake of 8 June 2008: seismological, Field, GPS observations, and stress modeling. Journal of Earthquake Engineering, 13(8), 1101-1124.
  46. Ganas, A., F. Cannavo, K. Chousianitis, I. Kassaras and G. Drakatos (2015) Displacements recorded on continuous GPS stations following the 2014 M6 Cephalonia (Greece) earthquakes: dynamic characteristics and kinematic implications. Acta Geodynamica Geomaterialia, 12(1), 5-27.
  47. Ganas, A., P. Elias, S. Valkaniotis and P. Briole (2017) Sentinel-1 reveals ground deformation after Aegean Sea earthquake. European Space Agency.
  48. https://earth.esa.int/web/guest/content/-/article/sentinel-1-reveals-ground-deformation-after-aegean-sea-earthquake.
  49. Geirsson, H., Th. Árnadóttir, S. Hiernsdóttir, J. Decriem, P.C. LaFemina, S. Jónsson et al. (2010) Overview of results from continuous GPS observations in Iceland from 1995 to 2010. Jökull Journal, 60, 3-22.
  50. Geographical Survey Institute, GSI (2003) Ground deformation in the 2003 Tokachi Oki earthquake. The 101st Meeting of the Coordinating Committee for Earthquake Prediction, Japan.
  51. Giuliani, R., M. Anzidei, L. Bonci, C. Calcaterra, N. D'Agostino, M. Mattone et al. (2007) Coseismic displacements associated to the Molise (southern Italy) earthquake sequence of October-November 2002 inferred from GPS measurements. Tectonophysics, 432(1), 21-35.
  52. Graham, Sh.E., Ch. DeMets, H.R. DeShon, R. Rogers, M.R. Maradiaga, W. Strauch et al. (2012) GPS and seismic constraints on the M = 7.3 2009 Swan Islands earthquake: implications for stress changes along the Motagua fault and other nearby faults. Geophysical Journal International, 190(3), 1625-1639.
  53. Graham, Sh.E., Ch. DeMets, E.Cabral-Cano, V. Kostoglodov, A. Walpersdorf, N. Cotte et al. (2014) GPS constraints on the Mw = 7.5 Ometepec earthquake sequence, southern Mexico: coseismic and post-seismic deformation. Geophysical Journal International, 199, 200-218.
  54. Group on Earth Observations, GEO (n.d.) Van, http://supersites.earthobservations.org/ van.php#GPS
  55. Gunawan, E., M. Kholil and I. Meilano (2016) Splay-fault rupture during the 2014 Mw 7.1 Molucca Sea, Indonesia, earthquake determined from GPS measurements. Physics of the Earth and Planetary Interiors, 259, 29-33.
  56. Hammond, W.C., G. Blewitt, C. Kreemer, J.R. Murray-Moraleda and J.L. Cvarc (2011) Global Positioning System constraints on crustal deformation before and during the 21 February 2008 Wells, Nivada M6.0 earthquake. Nivada Bureau of Mines and Geology Special Publication 36.
  57. He, P., Q. Wang, K. Ding, J. Li and R. Zou (2016) Coseismic and postseismic slip ruptures for 2015 Mw 6.4 Pishan earthquake constrained by static GPS solutions. Geodesy and Geodynamics, 7(5), 323-328.
  58. Heflin, M. (n.d.). GPS Time Series. https://sideshow.jpl.nasa.gov/post/series.html
  59. Hill, E.M., J.C. Borrero, Zh. Huang, Q. Qiu, P. Banerjee et al. (2012) The 2010 Mw 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research, 117(B6). doi:10.1029/2012JB009159
  60. Hoechner, A., A.Y. Babeko and S.V. Sobolev (2008) Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami. Geophysical Research Letters, 35, Issue 8, L08310.
  61. Hollenstein, Ch., M.D. Müller, A. Geiger and H.G. Kahle (2008) GPS-derived coseismic displacements associated with the 2001 Skyros and 2003 Lefkada earthquakes in Greece. Bulletin of the Seismological Society of America, 98(1), 149-161.
  62. Houlié, N., D. Dreger and A. Kim (2014) GPS source solution of the 2004 Parkfield earthquake. Scientific Reports, 4, 3646. Doi: 10.1038/srep03646.
  63. Hsu, Y.J., Sh.B. Yu, L.Ch. Kuo, Yi-Ch. Tsai and H.Y. Chen (2011) Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan. Tectonophysics, 502, 328-335.
  64. Hudnut, K., Z. Shen, M. Murray, S. McClusky, R. King, T. Herring et al. (1996) Co-seismic displacements of the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America, 86(1B), S19-S36.
  65. Hung, J.H., H.P. Zhan, D.V. Wiltschko and P. Fang (2002) Geodetically observed surface displacements of the 1999 Chi-Chi earthquake near southern termination of the Chelungpu fault. Terrestrial, Atmospheric and Oceanic Sciences Journal, 13(3), 355-366.
  66. Hutton, W., C. DeMets, O. Sánchez, G. Suárez and J. Stock (2001) Slip kinematics and dynamics during and after the 1995 October 9 Mw 8.0 Colima-Jalisco earthquake, Mexico, from GPS geodetic constraints. Geophysical Journal International, 146(3), 637-658.
  67. INGV Working Group (2016) Preliminary co-seismic displacements for the October 26 (Mw 5.9) and October 30 (Mw 6,5) central Italy earthquakes from the analysis of GPS stations. Doi: 10.5281/zenodo/167959. http://ring.gm.ingv.it/?p=1304
  68. International Seismological Center, ISC, On-line ISC Bulletin. http://www.isc.ac.
  69. Ito, T., E. Gunawan, F. Kimata, T. Tabei, I. Meilano, Augstan et al. (2016) Co-seismic offsets due to two earthquakes (Mw 6.1) along the Sumatran fault system derived from GNSS measurements. Earth, Planets and Space, 68(57).
  70. Jade, S., M. Mukul, I.A. Parvez, M.B. Ananda, P.D. Kumar, V.K. Gaur et al. (2003) Pre-seismic, co-seismic and post-seismic displacements associated with the Bhuj 2001 earthquake derived from recent and historical geodetic data. Journal of Earth System Science, 112(3), 331-345.
  71. Kaiser, A., C. Holden, J. Beavan, D. Beetham, R. Benites, A. Celentano et al. (2012) The Mw 6.2 Christchurch earthquake of February 2012: preliminary report. New Zealand Journal of Geology and Geophysics, 55(1), 67-90.
  72. Kimata, F., A. Tealeb, H. Murakami, N. Furukawa, S. Mahmoud, H. Khalil et al. (1997) The Aqaba earthquake of November 22, 1995 and co-seismic deformation in Sinai Peninsula deduced from repeated GPS measurements. Acta Geodaetica et Geophysica Hungarica, 32(1-2), 53-71.
  73. Klein, E., Ch. Vigny, L. Fleitout, R. Grandin, R. Jolivet, E. Rivera et al. (2017) A comprehensive analysis of the Illapel 2015 Mw 8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 468, 123-134.
  74. Kreemer, C., G. Blewitt and F. Maerten (2006) Co- and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophysical Research Letters, 33(L07307). Doi: 10.1029/2005GL05566.
  75. Kutoglu, H.S., R.N. Celik, M.T. Ozludemir and C. Güney (2011) New findings on the effects of the İzmit Mw=7.4 and Düzce Mw=7.2 earthquakes. Natural Hazards and Earth System Sciences, 11, 267-272.
  76. Larson, K.M. (2009) GPS Seismology. Journal of Geodesy, 83(3-4), 227-233. Doi:10.1007/s00190-008-0233-x.
  77. Lai, K.-Yuang, Y.-Gau Chen, Y.-Min Wu, J.-Philippe Avouac, Y. -Ting Kuo, Y. Wang et al. (2009) The 2005 Ilan earthquake doublet and seismic crisis in northwestern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa trough. Geophysical Journal International, 179, 678-686.
  78. Lundgren, P.R., S.K. Wolf, M. Protti and K.J. Hurst (1993) GPS measurements of crustal deformation associated with the Valle da la Estrella, Costa Rica earthquake. Geophysical Research Letters, 20(5), 407-410.
  79. Mahesh, P., B. Kundu, J.K. Katherine and V.K. Gahalaut (2011) Anatomy of the 2009 Fiordland earthquake (Mw 7.8), South Island, New Zealand. Geoscience Frontiers, 2(1), 17-22.
  80. Meng, G., J. Ren, X. Su, Y. Yang, Z. Zhu, L. Ge et al. (2013) Coseismic deformation of the 2010 Mw 6.9 Yushu earthquake derived from GPS data. Seismological Research Letters, 84(1), 57-64.
  81. Min-Chien, T., Ch. Chi-Yu, W. Shuo-Ying and IES GPS Team (2013) GPS coseismic displacements distribution of Ruisui earthquake at 31 Oct. 2013, Taiwan.
  82. http://tec.earth.sinica.edu.tw/new_web/upload/news/Conference/20131031RuisuiEQ/06_Tsai%20Min-Chien.pdf.
  83. Nakao, Sh., H. Yakiwara, Sh. Hirano, K. Goto, K. Ushida and H. Shimizu (2016) Crustal deformation by the West Off Satsuma Peninsula earthquake occurred on November 14, 2015. Japan Geoscience Union Meeting, Tokyo.
  84. NCSS 11 Statistical Software (2016). NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss.
  85. Nevada Geodetic laboratory, NGL (n.d.) Latest News. http://geodesy.unr.edu/ and https://www.unavco.org/highlights/2014/ferndale.html
  86. Nishimura, T., S. Fujiwara, M. Murakami, H. Suito, M. Tobita and H. Yarai (2006) Fault model of the 2005 Fukuoka-ken Seiho-oki earthquake estimated from coseismic deformation observed by GPS and InSAR. Earth Planets Space, 58, 51-56.
  87. Nishimura, T., M. Hashimoto, Y. Hoso, H. Sakaue and Y. Itoh (2017) Crustal deformation of the 2016 October 21th M 6.6 earthquake in central Tottori Prefecture. JpGU-AGU Joint Meeting 2017, Tokyo.
  88. Nocquet, J.-M., P. Jarrin, M. Vallée, P.A. Mothes, R. Grandin, F. Rolandone et al. (2017) Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nature Geoscince, 10, 145-149.
  89. Nykolaishen, L., H. Dragert, K. Wang, Th.S. James and M. Schmidt (2015) GPS observations of crustal deformation associated with the 2012 Mw 7.8 Haida Gwaii earthquake. Bulletin of the Seismological Society of America, 105(2B), 1241-1252.
  90. Ohta, Y., S. Miura, M. Ohzono, S. Kita, T. Iinoma, T. Demachi et al. (2011) Large intraslab earthquake (2011 April 7, M 7.1) after the 2011 off the Pacific coast of Tohoku earthquake (M 9.0): coseismic fault model based on the dense GPS network data. Earth Planets Space, 63, 1207-1211.
  91. O'Keefe, K. and L.P. Fortes (2001) Using permanent GPS stations to detect the 2001 Nisqually earthquake. Proceedings of the Scientific Assembly of the International Association of Geodesy (Paper 170BD, 5 pages), Budapest, Hungary.
  92. Ozawa, Sh., H. Yarai, M. Tobita, H. Une and T. Nishimura (2008) Crustal deformation associated with the Noto Hanto earthquake in 2007 in Japan. Earth Planets Space, 60, 95-98.
  93. Ozener, H., A. Dogru and A. Unlutepe (2009) An approach for rapid assessment of seismic hazards in Turkey by continuous GPS data. Sensors, 9(1), 602-615.
  94. Polcari, M., M. Albano, J. Fernández, M. Palano, S. Samsonov, S. Stramondo et al. (2016) Three-dimensional (3D) coseismic deformation map produced by the 2014 south Napa earthquake estimated and modeled by SAR and GPS data integration. European Geosciences Union General Assembly (EGU), Vienna, Austria, p. 12959.
  95. Pollitz, F.F., Ch. Wicks, M. Schoenball, W. Elssworth and M. Murray (2017) Geodetic slip model of the 3 September 2016 Mw 5.8 Pawnee, Oklahoma, earthquake: evidence for fault-zone collapse. Seismological Research Letters, 88(4), 983-993.
  96. Pradhan, R., S.K. Prajapati, S. Chopra, A. Kumar, B.K. Bansal and C.D. Reddy (2013) Causative source of Mw 6.9 Sikkim-Nipal border earthquake of September 2011: GPS baseline observations and strain analysis. Journal of Asian Earth Sciences, 70-71, 179-192.
  97. Pritchard, M.E., E.O. Norabuena, C. Ji, R. Boroschek, D. Comte, M. Simons et al. (2007) Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. Journal of Geophysical Research, 112(B03307).
  98. Protti, M., V. González, A.V. Newman, T. H. Dixon, S.Y. Schwartz, J.S. Marshall et al. (2014) Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nature Geoscience, 7, 117-121.
  99. Regnier, M., S. Calmant, B. Pelletier, Y. Lagabrielle and G. Cabioch (2003) The Mw 7.5 1999 Ambrym, Vanuatu: a pack arc intraplate thrust event. Tectonics, 22(4), 1043.
  100. Reigber, Ch., Y. Xia, G.W. Michel, J. Koltz and D. Angermann (1997) The Antofagasta 1995 earthquake: crustal deformation pattern as observed by GPS and D-INSAR. The 3rd ERS Symposium, Florence.
  101. Ruddick, R. (2005) Analysis of the 2002 Mw = 7.6 Wewak earthquake, Papua New Guinea, using Global Positioning System observations. Thesis of Honours, The Australian National University, Canberra.
  102. Ruiz, S., E. Klein, F. del Campo, E. Rivera, P. Poli, M. Metois et al. (2016) The seismic sequence of the 16 September 2015 Illapel Mw 8.3 earthquake. Seismological Research Letters, 87(4), 789-799.
  103. Sbeinati, M. R., R. Darawcheh and M. Mouti (2005) The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D. Annals of Geophysics, 48(3), 347-435.
  104. Schmitt, S.V., Ch. DeMets, J. Stock, O. Sánchez, B. Márquez-Azúa and G. Reyes (2007) A geodetic study of the 2003 January Tecomán, Colima, Mexico earthquake. Geophysical Research International, 169(2), 389-406.
  105. School of Ocean and Earth Science and Technology, SOEST (2015) Preliminary coseismic displacement field M8.8 Maule earthquake, Chili, Feb 27, 2010. University of Hawai' I at Mãnoa.
  106. Scordilis, E.M. (2006) Empirical global relations converting Ms and mb to moment magnitude. Journal of Seismology, 10, 225-236. Doi: 10.1007/s10950-006-9012-4.
  107. Seeüller, W., K. Kaniuth and H. Drewes (2001) Velocity estimates of IGS RNAAC SIRGAS stations. International Association of Geodesy Symposium, Cartagena, Colombia.
  108. Serpelloni, E., L. Anderlini, A. Avallone, V. Cannelli, A. Cavaliere, D. Cheloni et al. (2012) GPS observations of coseismic deformation following the May 20 and 29, 2012, Emilia seismic events (northern Italy): data, analysis and preliminary models. Annals of Geophysics, 55(4), 759-766. Doi: 10.4401/ag-6168.
  109. Shao, G., C. Ji and D. Zhao (2011) Rupture process of the 9 March, 2011 Mw 7.4 Sanriku-Oki, Japan earthquake constrained by jointly inverting teleseismic waveforms, strong motion data and GPS observations. Geophysical Research Letters, 38(L00G20).
  110. Shaomin, Y., N. Zhaocheng, J. Zhige, C. Huijie and P. Maolei (2011) Co-seismic displacements of 2011 Japan Mw 9.0 earthquake recorded by far-field GPS stations. Geodesy and Geodynamics, 2(3), 12-15.
  111. Som, S.K., P. Jana, S.R. Mohapatra, S.K. Nayak and A.K. Saha (2013) Mw 5.9, 18th June 2010 earthquake and fault segment linkage at Andaman - a study based on macroseismic survey, GPS Geodesy and Coulomb stress changes. Journal of Asian Earth Sciences. 67, 26-36.
  112. Stanaway, R. (2008) Papua New Guinea on the move-GPS monitoring of plate tectonics and earthquakes. The 42nd Association of Surveyors PNG Congress, Port Moresby.
  113. Stein, R.S., G.A. Marshall, M.H. Murray, E. Balazs, G.A. Carver, T.A. Dunklin et al. (1993) Permanent ground movement associated with the 1992 M=7 Cape Mendocino, California, earthquake: implications for damage to infrastructure and hazard to navigation. U.S. Geological Survey Open-File Report 93-383.
  114. Tabei, T., T. Kato, J.P.L. Catane, T. Chachin, K. Fujimori, K. Hirahara et al. (1996) Crustal deformation associated with the 1995 Hyogo-ken Nanbu earthquake, Japan derived from GPS measurements. Journal of Physics of the Earth, 44, 281-286.
  115. Tahayt, A., K.L. Feigl, T. Mourabit, A. Rigo, R. Reilinger, S. McClusky et al. (2009) The Al-Hoceimah (Morocco) earthquake of 24 February 2004, analysis and interpretation of data from ENVISAT ASAR and SPOT5 validated by ground-based observation. Remote Sensing of Environment, 113, 306-316.
  116. Al-Tarazi, E. (2000) The major gulf of the Aqaba earthquake, 22 November 1995-maximum intensity distribution. Natural Hazards, 22, 17-27.
  117. Terry, R.L., G.J. Funning and M. Floyd (2017) A study of the December 2016, The Geysers, CA earthquake using InSAR and GPS. Poster presented at 2017 Southern California Earthquake Center Annual Meeting. University of Southern California, Los Angeles.
  118. Timofeev, V.Y., D.G. Ardyukov, Y.F. Stus, E.N. Kalish, E.V. Boiko, R.G. Sedusov et al. (2008) Pre-, co and post-seismic motion for the Altay region by GPS and gravity observations. The International Conference ETS, Weimar, Germany, 11687-11705.
  119. Tregoning, P., R. Burgette, S.C. McClusky, S. Lejeune, C.S. Watson and H. McQueen (2013) A decade of horizontal deformation from great earthquakes. Journal of Geophysical Research, Solid Earth, Vol. 118, 2371–2381, doi:10.1002/jgrb.50154.
  120. Tsai, M.C., T.C. Shin and K.W. Kuo (2017) Pre-seismic strain anomalies and coseismic deformation of the Meinong earthquake from continuous GPS. Terrestrial Atmospheric and Oceanic Sciences 28(5). Doi: 10.3319/TAO.2017.04.19.01.
  121. Tyriakioğlu, I. (2015) Geodetic aspects of the 19 May 2011 Simav earthquake in Turkey. Geomatics, Natural Hazards and Risk, 6(1), 76-89.
  122. UNAVCO (2010) Gorda earthquake recorded in PBO GPS 15-second time series. https://www.unavco.org/highlights/2010/gorda-earthquake-recorded-in-pbo-gps-15-second-time-series.html
  123. United States Geological Survey (USGS) Homepage, http://www.usgs.gov
  124. Wang, K. and Y. Fialko (2015) Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophysical Research Letters, 42(18), 7452-7458.
  125. Wang, M., Y. Wan, Zh. Shen, J. Chen, Z. Zhang, W. Gan et al. (2006) Coseismic slip distribution of the 2001 Kokoxili, northern Tibet, earthquake, constrained by GPS and geological field survey data. Tectonophysics.
  126. Weber, J.C., H. Geirsson, J.L. Latchman, K. Shaw, P. La Femina, S. Wdowinski et al. (2015) Tectonic inversion in the Caribbean-south American plate boundary: GPS geodesy, seismology, and tectonics of the Mw 6.7 22 April 1997 Tobago earthquake, Tectonics, 34, 1181-1194.
  127. Williams, C.R. and P. Segall (1996) Coseismic displacements measured by Global Positioning System. In Paul Spidich (editor), The Loma Prieta, California, Earthquake of October 17, 1989-Main shock characteristics (236-278), Washington.
  128. Wiseman, K., P. Banerjee, R. Bürgmann, K. Sieh, D.S. Dreger and I. Hermawan (2012) Source model of the 2009 Mw 7.6 Padang intraslab earthquake and its effect on the Sunda megathrust. Geophysical Journal International, 190, 1710-1722.
  129. Yamazaki, F., L. Moya, K. Anekoji and W. Liu (2014) Comparison of the coseismic displacements obtained from strong motion accelorograms and GPS data in Japan. Second European Conference on Earthquake Engineering and Seismology, Istanbul.
  130. Yarai, H., T. Kobayashi, Y. Morishita, S. Fujiwara, H. Munekane, Y. Hiyama. et al. (2016) Crustal deformation of the 2016 Kumamoto earthquake. Japan Geoscience Union Meeting, Tokyo.
  131. Yelles, K., K. Lammali, A. Mahsas, E. Calais and P. Briole (2004) Coseismic deformation of the May 21st, 2003, Mw=6.8 Boumerdes earthquake, Algeria, from GPS measurements. Geophysical Research Letters, Vol. 31, Issue 13, L13610, doi: 10.1029/2004GL019884, 5 pages.
  132. Yiğit, C. Ö, I. Tiryakioğlo, M.H. Saka and R.M. Alkan (2015) GNSS-derived coseismic displacement of the Gökçeada earthquake (2014, Mw:6.9) based on 1 Hz GNSS data. Geophysical Research Abstracts, Vol. 17, EGU2015, EGU General Assembly.
  133. Yin, H., Sh. Wdowinski, X. Liu, W. Gan, B. Huang, G. Xiao et al. (2013) Strong ground motion recorded by high-rate GPS of the 2008 Ms 8.0 Wenchuan earthquake, China. Seismological Research Letters, 84(2), 210-218.
  134. Yokota, Y., K. Koketsu, K. Hikima and Sh. Miyazaki (2009) Ability of 1-Hz GPS data to infer the source process of a medium-sized earthquake: the case of the 2008 Iwate-Miyagi Nairiku, Japan. Geophysical Research Letters, 36(L12301).
  135. Yong, H., Y. Shaomin, Zh. Bin, W. Wei and T. Kai (2013) The coseismic displacements of the 2013 Lushan Mw 6.6 earthquake determined using continuous global positioning system measurements. Geodesy and Geodynamics, 4(2), 6-10.
  136. Yongge, W., Sh. Zhengkang, H. Zhende, W. Min, Ch. Jie, Z. Zusheng et al. (2005) Co-seismic slip distribution of the 2001 Kokoxili earthquake inverted by GPS data. Earthquake Research in China, 19(4), 420-429.
  137. Zheng, Y., J. Li, Z. Xie and M.H. Ritzwoller (2012) 5Hz GPS seismology of the El Mayor-Cucapah earthquake: estimating the earthquake focal mechanism. Geophysical Journal International, 190, 1723-1732.
  138. Zohar, M. and Sh. Marco (2012) Re-estimating the epicenter of the 1927 Jericho earthquake using spatial distribution of intensity data. Journal of Applied Geophysics, 82, 19-29.