Vol. 60 No. 1 (2021): Geofísica Internacional
Articles

Geometría de la zona sismogénica interplacas en el sureste de Costa Rica a la luz de la secuencia sísmica de golfito del 2018

Ivonne Gabriela Arroyo
Red Sismológica Nacional (RSN:UCR-ICE) Universidad de Costa Ruca
Lepolt Linkimer
Escuela Centroamericana de Geología y Red Sismológica Nacional (RSN: UCR-ICE) Universidad de Costa Rica

Published 2021-01-01

How to Cite

Arroyo, I. G., & Linkimer, L. (2021). Geometría de la zona sismogénica interplacas en el sureste de Costa Rica a la luz de la secuencia sísmica de golfito del 2018. Geofísica Internacional, 60(1), 51-75. https://doi.org/10.22201/igeof.00167169p.2021.60.1.2026

Abstract

Entre agosto y noviembre del 2018 ocurrio? una secuencia de sismos en el golfo Dulce, cerca de la ciudad de Golfito, al sureste de Costa Rica. El sismo principal tuvo una magnitud momento (Mw) 6.1 y fue sentido en Costa Rica y el oeste de Panama? con intensidades Mercalli Modificada ma?ximas de VI. En esta regio?n, la placa del Coco, junto con la cordillera ocea?nica del Coco, se subducen bajo la microplaca de Panama?. Usando los registros de la Red Sismolo?gica Nacional de Costa Rica, en este arti?culo se presenta la relocalizacio?n de esa sismicidad con la te?cnica de diferencia doble y se analiza la distribucio?n temporal y geogra?fica de la sismicidad, junto con el mecanismo focal e intensidades de los sismos de mayor taman?o. Los resultados muestran que la secuencia ocurrio? en la zona sismoge?nica interplacas, dentro del a?rea de ruptura del terremoto de Golfito de 1983 (Mw 7.4), entre 12 y 27 km de profundidad, en un agrupamiento buzante 35o al noreste bajo el golfo Dulce. Con base principalmente en estos resultados y en secuencias si?smicas previas, se propone que en el Sureste de Costa Rica la zona sismoge?nica tiene dimensiones de ~160 x 45 km. Adema?s, durante la secuencia de Golfito, ocurrio? la ruptura de una falla inversa (Mw 5.9) dentro de la placa del Coco bajo el golfo Dulce, asi? como la ruptura en fallas de rumbo dextrales en la microplaca de Panama? (Mw 4.6-5.6), a 50 km del golfo Dulce. El estudio de la sismicidad interplacas interciclo contribuye con el conocimiento de la dina?mica de la zona sismoge?nica interplacas. Esto es de particular importancia para el Sureste de Costa Rica, donde se han generado al menos seis terremotos destructivos con Mw > 7 desde 1803, lo que implica el peligro inminente de un pro?ximo terremoto en esta zona.

References

  1. Adamek, S., Tajima, F., Wiens, D. G., 1987, Seismic rupture associated with subduction of the Cocos Ridge, Tectonics, 6, 6, 757-774.
  2. Arroyo, I.G., 2001, Sismicidad y Neotectónica en la región de influencia del proyecto Boruca: hacia una mejor definición sismogénica del Sureste de Costa Rica, Tesis de Licenciatura, Universidad de Costa Rica, 162 pp.
  3. Arroyo, I.G., Husen, S., Flueh, E.R., Gossler, J., Kissling, E., Alvarado, G.E., 2009, Three‐dimensional P‐wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off‐ and onshore networks, Geophys. J. Int., 179, 827-849, doi:10.1111/j.1365-246X.2009.04342.x.
  4. Arroyo, I.G., Husen, S., Flueh, E.R., 2014a, The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network, Int J. Earth Sci., 103, 1747, doi:10.1007/s00531-013-0955-8.
  5. Arroyo, I. G., Grevemeyer, I., Ranero, C.R., von Huene, R., 2014b, Interplate seismicity at the CRISP drilling site: The 2002 Mw 6.4 Osa Earthquake at the southeastern end of the Middle America Trench, Geochem. Geophys. Geosyst., 15, 3035– 3050, doi:10.1002/2014GC005359.
  6. Arroyo, M., Linkimer, L., Arroyo, I.G., 2020, Recuento de la sismicidad en Costa Rica durante el 2019. En revisión en Revista Geológica de América Central.
  7. Bilek, S., Lay, T., 2018, Subduction zone megathrust earthquakes, Geosphere, 14, 4, 1468–1500, doi:10.1130/GES01608.1.
  8. Bilek, S. L., Schwartz, S., Deshon, H., 2003, Control of seafloor roughness in earthquake rupture behavior, Geology, 31, 455-458.
  9. Byrne, D.E., Davis D.M., Sykes, L.R., 1988, Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones, Tectonics, 7, 4, 833–857. doi:10.1029/TC007i004p00833.
  10. Camacho, E., 1991, The Puerto Armuelles Earthquake (Southwestern Panama) of July 18, 1934, Revista Geológica de América Central, 13, 1-13.
  11. Camacho, E., 2003, Sismotectónica del extremo norte de la Zona de Fractura de Panamá, Tecnociencia, 5, 2, 139-152.
  12. Chaves, E.J., Duboef, L., Schwartz, S.Y., Lay, T., Kintner, T., 2017, Aftershocks of the 2012 Mw 7.6 Nicoya, Costa Rica, Earthquake and Mechanics of the Plate Interface, Bull. Seis. Soc. Amer., 107, 3, 1227–1239.
  13. Collins, L.S., Coates, A.G., Jackson, J.B. C., Obando, J.A., 1995, Timing and rates of emergence of the Limon and Bocas del Toro Basins: Caribbean effects of the Cocos Ridge subduction?, En: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America: Colorado-EEUU, Geological Society of America, Special Paper 295, 349 pp.
  14. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., 1990, Current plate motions, Geophys. J. Int., 101, 309-324.
  15. DeShon, H.R., Schwartz, S.Y., Bilek, S.L., Dorman L.M., Gonzalez, V., Protti, J.M., Flueh, E.R., Dixon, T.H., 2003, Seismogenic zone structure of the southern Middle America Trench, Costa Rica, J. Geophys. Res., 108(B10), 2491, doi:10.1029/2002jb002294
  16. DeShon H.R., Schwartz, S.Y., Newman, A.V., González, V., Protti, M., Dorman, L.M., Dixon, T.H., Sampson, D.E., Flueh, E.R., 2006, Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography, Geophys. J. Int., 164, 1, 109–124, doi:10.1111/j.1365-246X.2005.02809.x
  17. Denyer, P., Montero, W., Alvarado, G., 2003, Atlas Tectónico de Costa Rica. Editorial de la Universidad de Costa Rica, San José. 81 pp.
  18. Dinc, N.A., Koulakov, I., Thorwart, M., Rabbel, W., Flueh, E.R., Arroyo, I.G, Taylor, W., Alvarado, G., 2010, Local earthquake tomography of central Costa Rica: transition from seamount to ridge subduction, Geophys. J. Int., 183, 1, 286–302, doi: 10.1111/j.1365-246X.2010.04717.x
  19. Dzierma, Y., Rabbel, W., Thorwart, M.M., Flueh, E.R., Mora, M.M., Alvarado, G.E., 2011, The steeply subducting edge of the Cocos Ridge: Evidence from receiver functions beneath the northern Talamanca Range, south-central Costa Rica, Geochem. Geophys. Geosyst., 12, Q04S30, doi:10.1029/2010GC003477.
  20. Ekström, G., Nettles, M., Dziewonski, A.M., 2012, The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002.
  21. Feng, L., Newman, A.V., Protti, M., González, V., Jiang Y., Dixon, T.H., 2012, Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling, J. Geophys. Res., 117(B6), B06407, doi:10.1029/2012jb009230
  22. Gempa, 2019, SeisComp 3 Real time data acquisition and processing [software computacional]. Potsdam, Alemania, Gempa GmbH.
  23. Global CMT Catalog. 2017. The Global Centroid-Moment-Tensor (CMT) Project. Consultado el 6 de diciembre del 2019. http://www.globalcmt.org/CMTsearch.html
  24. Gutenberg, B., Richter, C.F., 1954, Seismicity of the Earth and associated phenomena. Princeton University Press, Nueva Jersey, 310 pp.
  25. Harris, R.N., Spinelli, G., Ranero, C.R., Grevemeyer, I., Villinger, H., Barckhausen, U., 2010, Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica, Geochem. Geophys. Geosyst., 11(12), Q12S29, doi:10.1029/2010gc003273.
  26. Husen, S., Kissling, E., Quintero, R., 2002, Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: the cause of the 1990 Mw = 7.0 Gulf of Nicoya earthquake, Geophys. Res. Lett., 29, 8, 1238, doi:10.1029/2001gl014045.
  27. Husen, S., Quintero, R., Kissling, E., Hacker, B., 2003, Subduction-zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modeling, Geophys. J. Int., 155, 1, 11–32. doi:10.1046/j.1365-246X.2003.01984.x.
  28. Hyndman, R.D., Yamano, M., Oleskevich., D.A., 1997, The seismogenic zone of subduction thrust faults, Isl. Arc, 6, 3, 244–260, doi:10.1111/j.1440-1738.1997.tb00175.x.
  29. Kobayashi, D., LaFemina, P., Geirsson, H., Chichaco, E., Abrego, A.A., Mora, H., Camacho, E., 2014, Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation, Geochem. Geophys. Geosyst., 15, doi:10.1002/2014GC005234.
  30. Kolarsky, R.A., Mann, P., 1995, Structure and neotectonics of an oblique subduction margin, southwestern Panama. En: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Colorado-EEUU, Geological Society of America, Special Paper 295, 349 pp.
  31. Kolarsky, R.A., Mann, P., Montero, W., 1995, Island arc response to shallow subduction of the Cocos Ridge: En: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Colorado-EEUU, Geological Society of America, Special Paper 295, 349 pp.
  32. LaFemina, P., Dixon, T.H., Govers, R., Norabuena, E., Turner, H., Saballos, A., Mattioli, G., Protti, M., Strauch, W., 2009, Fore-arc motion and Cocos Ridge collision in Central America, Geochem. Geophys. Geosyst., 10, doi: 10.1029/2008GC002181.
  33. Lay, T., Bilek, S.L., 2007, Anomalous earthquake ruptures at shallow depths on subduction zone megathrusts. En: Dixon, T. H., Moore, J. C., (Eds), The Seismogenic Zone of Subduction Thrust Faults: New York, Columbia University Press, p. 476–511, doi: 10 .7312/dixo13866 -015.
  34. Lienert, B.R., Havskov, J., 1995, A computer program for locating earthquakes both locally and globally, Seismol. Res. Lett., 66, 5, 26-36, doi: 10.1785/gssrl.66.5.26.
  35. Linkimer, L., 2008, Application of the Kriging method to draw the isoseismal maps of the significant 2002-2003 Costa Rican earthquakes, Revista Geológica de América Central, 38, 119-134.
  36. Linkimer, L., Arroyo, I.G., Alvarado, G.E., Arroyo, M., Bakkar, H., 2018, The National Seismological Network of Costa Rica (RSN): An Overview and Recent Developments, Seismol. Res. Lett., 89(2A), 392-398. doi:10.1785/0220170166.
  37. Liu, C., Zheng, Y., Xiong, X., Wang, R., López, A., Li, J., 2015, Rupture processes of the 2012 September 5 Mw 7.6 Nicoya, Costa Rica earthquake constrained by improved geodetic and seismological observations, Geophys. J. Int., 203, 175–183, doi: 10.1093/gji/ggv295.
  38. Lonsdale, P., 2005, Creation of the Cocos and Nazca plates by fission of the Farallon plate, Tectonophysics, 404, 237–264, doi:10.1016/j.tecto.2005.05.011.
  39. Lonsdale, P., Klitgord, K. D., 1978, Structure and tectonic history of the Eastern Panama Basin, Geol. Soc. Amer. Bull., 89, 981-999.
  40. Lücke, O., 2014, Moho structure of Central America based on three dimensional lithospheric density modelling of satellite-derived gravity data, Int. J. Earth Sci., 1–13, doi:10.1007/s00531-012-0787-y.
  41. Lücke, O.H. Arroyo, I.G., 2015, Density Structure and Geometry of the Costa Rican Subduction Zone from 3-D Gravity Modeling and Local Earthquake Data, Solid Earth, 6, 1169-1183, doi: 10.5194/se-6-1169-2015.
  42. Peraldo, G., Montero, W., Camacho, E., 2006, El terremoto del 29 de mayo de 1879: una ruptura de magnitud Ms > 7,0 en la zona limítrofe sur de Costa Rica y Panamá, Revista Geológica América Central, 34-35, 31-42.
  43. Marshall, J., Fisher, D., and Gardner, T, 2000, Central Costa Rica Deformed Belt: Kinematics of diffuse faulting across the western Panama block, Tectonics, 19, 3, 468–492.
  44. Mann, P., Kolarsky, R.A., 1995, East Panama deformed belt: Structure, age, and neotectonic significance. En: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Colorado-EEUU, Geological Society of America, Special Paper 295, 349 pp.
  45. Martínez‐Loriente, S., Sallarès, V. R., Ranero, C. B., Ruh, J., Barckhausen, U., Grevemeyer, I., Bangs, N., 2019, Influence of incoming plate relief on overriding plate deformation and earthquake nucleation: Cocos Ridge subduction (Costa Rica), Tectonics, 38, doi: 10.1029/2019TC005586.
  46. Matumoto, T., Ohtake, M., Latham, G., Umana, J., 1977, Crustal structure in Southern Central America, Bull. Seis. Soc. Amer., 67, 121-133.
  47. Montero, W., 1986, Períodos de recurrencia y tipos de secuencias sísmicas de los temblores interplaca e intraplaca en la región de Costa Rica, Revista Geológica de América Central, 5, 35-72.
  48. Montero, W. 2001, Neotectónica de la región central de Costa Rica: frontera oeste de la microplaca de Panamá, Revista Geológica de América Central, 24, 29–56.
  49. Morell, K. D., 2015, Late Miocene to recent plate tectonic history of the southern Central America convergent margin, Geochem. Geophys. Geosyst., 16, 3362–3382, doi:10.1002/2015GC005971.
  50. Morell, K.D., Fisher, D.M., Gardner, T.W., 2008, Inner forearc response to subduction of the Panama Fracture Zone, southern Central America, Earth Planet. Sci. Lett., 265, 82-95.
  51. Moore, J.C, Saffer, D., 2001, Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 2, 183–186. doi:10.1130/0091-7613(2001)029183:ULOTSZ[2.0.CO;2.
  52. Moore, J.C, Rowe, C., Meneghini, F., 2007, How accretionary prisms elucidate seismogenesis in subduction zones. En: Dixon, T. H., Moore, J. C. (Eds), The seismogenic zone of subduction thrust faults. Columbia University Press, New York, 288–315 pp.
  53. NEIC Catalog, 2019. National Earthquake Information Center (NEIC). Consultado el 6 de diciembre del 2019. https://earthquake.usgs.gov/earthquakes/search/
  54. Oleskevich, D.A., Hyndman, R.D., Wang, K., 1999, The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, J. Geophys. Res., 104(B7), 14965–14991, doi:10.1029/1999jb900060
  55. Ottemöller, L., Voss, P., Havskov, J., 2019, SEISAN Earthquake Analysis Software for Windows, Solaris, Linux and Macosx. Recuperado de http://seis.geus.net/software/seisan/seisan.pdf
  56. Outerbridge, K.C., Dixon, T.H., Schwartz, S.Y., Walter, J.I., Protti, M., Gonzalez, V., Biggs, J., Thorwart, M., Rabbel, W., 2010, A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica, J. Geophys. Res., 115(B10), B10408, doi:10.1029/2009jb006845.
  57. Pacheco, J.F., Sykes, L.R., 1992, Seismic moment catalog of large, shallow earthquakes, 1900-1989, Bull. Seis. Soc. Amer., 82, 1306-1349.
  58. Protti, M., Güendel, F., McNally, K., 1994, The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network, Phys. Earth Planet. Inter., 84, 1–4, 271–287. doi:10.1016/0031-9201(94)90046-9.
  59. Protti, M., González, V., Newman, A., 2014, Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface, Nature Geosci., 7, 117–121 (2014), doi:10.1038/ngeo2038.
  60. Ranero, C., Vannucchi, P., von Huene, R., 2007, Drilling the seismogenic zone of an Erosional convergent margin: IODP Costa Rica Seismogenesis Project CRISP. En: Abstracts and report from the IODP/ICDP Workshop on Fault Zone Drilling. Scientific Drilling: Special Issue. IODP-MI, Miyzaki, 51-54 pp., doi:10.2204/iodp.sd.s01.29.2007
  61. Ranero, C.R., Grevemeyer, I., Sahling, H., Barckhausen, U., Hensen, C., Wallmann, K., Weinrebe, W., Vannucchi, P., von Huene, R., McIntosh, K., 2008, Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis, Geochem. Geophys. Geosyst., doi:10.1029/2007GC001679.
  62. Red Sismológica Nacional de Costa Rica, 2017, The Costa Rica National Seismological Network Catalog during 1975-2017, doi: https://doi.org/10.15517/TC.
  63. Sallarès, V., Dañobeitia, J.J., Flueh, E.R., 2001, Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau, J. Geophys. Res., 106, 621-643.
  64. Sallarès, V., Charvis, P., Flueh, E.R., Bialas, J., 2003, Seismic structure of Cocos and Malpelo Volcanic Ridges and implications for hot spot-ridge interaction, J. Geophys. Res., 108(B12), 2564, doi:10.1029/2003JB002431.
  65. Snoke, J., Munsey, J., Teague, A., Bollinger, G., 1984, A program for focal mechanism determination by combined use of polarity and Sv-P amplitude ratio data, Earthquake Notes, 55, 15-20.
  66. Tajima, F., Kikuchi, M., 1995, Tectonic implications of the seismic ruptures associated with the 1983 and 1991 Costa Rica earthquakes. En: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Colorado-EEUU, Geological Society of America, Special Paper 295, 349 pp.
  67. Tichelaar, B.W., Ruff, L.J., 1993, Depth of seismic coupling along subduction zones, J. Geophys. Res., 98(B2), 2017–2037, doi:10.1029/92jb02045.
  68. Vannucchi, P., Scholl, D.W., Meschede, M., McDougall-Reid, K., 2001, Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula, Tectonics, 20, 5, 649–668, doi:10.1029/2000tc001223.
  69. Vannucchi, P., Sak, P.B., Morgan, J.P., Ohkushi, K., Ujiie, K., 2013, Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins, Geology, 41, 9, 995–998, doi:10.1130/G34355.1.
  70. von Huene, R., Ranero, C.R., Weinrebe, W., Hinz, K., 2000, Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism, Tectonics, 19, 2, 314–334, doi:10.1029/1999tc001143.
  71. von Huene, R., Ranero, C.R., Vannucchi, P., 2004, Generic model of subduction erosion, Geology, 32, 10, 913–916, doi:10.1130/G20563.1.
  72. Vrolijk, P., 1990, On the mechanical role of smectite in subduction zones, Geology, 18, 703-707.
  73. Walther, C.H.E., 2003. The crustal structure of Cocos Ridge off Costa Rica, J. Geophys. Res., 108(B3), 2136, doi:10.1029/2001JB000888.
  74. Waldhauser, F., Ellsworth, W., 2000, A double difference earthquake location algorithm: Method and application to the Northern Hayward fault, California, Bull. Seis. Soc. Amer., 90, 6, 1353-1368. doi:10.1785/0120000006.
  75. Waldhauser, F., 2001, HypoDD -- A program to compute double-difference hypocenter locations, Open-File Rep. U. S. Geological Survey, 25, 1-113.
  76. Werner, R., Hoernle, K., van Den Bogaard, P., Ranero, C.R., von Huene, R. Korich, D., 1999, Drowned 14 m.y. old Galapagos archipielago off the coast of Costa Rica: implications for tectonic and evolutionary models, Geology, 27, 499–502.
  77. Wessel, P., Smith, W H.F., Scharroo, R., Luis, J., Wobbe, F., 2013, Generic Mapping Tools: Improved Version Released, EOS Trans. AGU, 94(45), 409–410, doi:10.1002/2013EO450001.
  78. Westbrook, G.K., Hardt, N.C., Heath, R., 1995, Structure and tectonics of the Panama–Nazca boundary. En: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Colorado-EEUU, Geological Society of America, Special Paper 295, 349 pp.
  79. Wald, D.J., Quitoriano, V., Heaton, T.H., Kanamori, H., Scrivner, C.W., Worden, C.B., 1999, TriNet “ShakeMaps”: Rapid generation of peak ground motion and intensity maps for earthquakes in southern California, Earthquake Spectra, 15, 3, 537-555.
  80. Wald, D., Wald, L., Worden, B., Goltz, J., 2003, ShakeMap, a tool for earthquake response, U.S. Geological Survey Fact Sheet, 087-03.
  81. Ye, L., Lay, T., Kanamori, H., Rivera, L., 2016, Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships, J. Geophys. Res. Solid Earth, 121, 826– 844, doi: 10.1002/2015JB012426.
  82. Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T. Fukushima, Y., 2006, Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bull. Seis. Soc. Amer., 96, 3, 898-913.