Vol. 59 No. 3 (2020)

High precision measurements of Absolute Gravity in México: the Jalisco Block changes in gravity triggered by distant earthquakes

Alfredo Esparza
Centro Nacional de Metrología (CENAM), Posgrado en Ciencias de la Tierra, Campus UNAM
Jorge Arzate
Centro de Geociencias, Campus UNAM
Ludger Timmen
Leibniz Universität Hannover (LUH)
Jason Silliker
Natural Resources Canada (NRC/RNCan)
Manuel Schilling
Leibniz Universität Hannover (LUH)

Published 2020-07-01


  • g-Absoluta,
  • comparación internacional,
  • desplazamientos verticales,
  • Bloque de Jalisco,
  • subducción asísmica
  • Absolute gravity,
  • international comparison,
  • vertical displacements,
  • Jalisco Block,
  • aseismic subduction

How to Cite

Esparza, A., Arzate, J., Timmen, L., Silliker, J., & Schilling, M. (2020). High precision measurements of Absolute Gravity in México: the Jalisco Block changes in gravity triggered by distant earthquakes. Geofísica Internacional, 59(3), 155-168. https://doi.org/10.22201/igeof.00167169p.2020.59.3.2091


We report the results of 16 Absolute Gravity (AG) measurements distributed central and western Mexico employing two free-fall gravity instruments; the FG5X-220 of Leibniz Universität Hannover (LUH), and the FG5X-252 instrument of the Centro Nacional de Metrología (CENAM). Previous to the setup of new stations and acquisition campaigns, the FG5X-252 was certified in two steps, first a mutual comparison with the reference gravimeter FG5X-220, which have a long range stability below 2 µGal, and later through an international comparison at NOAA´s Table Mountain, Col. facilities with 13 other instruments of different countries. The acquisition campaigns in the Jalisco Block (JB) took place during the dry season of 2016 and 2018, which included AG stations in Chamela (CHA), Guadalajara (AGG), Manzanillo (MAN), Puerto Vallarta (UGP), and Tepic (TEP); the later established new reference station in the north of the JB in 2016. The results obtained from the 2016 and 2018 field campaigns in the JB were compared with 1996 AG data acquired by NOAA at the same sites established. The observed vertical displacements in the two years period at stations CHA (+22.7 cm), UGG (+44.3 cm) and MAN (+54.6 cm) overcomes substantially the annual average (2.8 cm, 4.2 cm y 3.6 cm respectively) from the difference of the AG measurements 2016-1996. In the same period the UGP station subsided 8.5 cm, while station TEP remained quite stable (-0.25). In September 2017 two large earthquakes of magnitudes 8.2 and 7.1 occurred in the coast of Chiapas (07/Nov/2017) and in the State of Puebla (19/Nov/2017), which were recorded at some of the UNAVCO´s GPS stations, namely MAN, UGG and CHA even though the nearest seismic source was located more than 500 km to the east. The analysis of our results in combination with other geophysical data support the hypothesis that the earthquake with epicenter in Puebla triggered the aseismic subduction of a segment of the Ribera Plate (RP), which in turn uplifted the stations above mentioned. We conclude that the aseismic subduction in this region is facilitated by a wet oceanic crust that carries important amounts of marine sediments, producing a lubricated interface between oceanic RP and the overriding JP.