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Abstract: 

There are numerous methods to detect the edge of gravity and magnetic field anomaly 

source, most of which are based on the combination of first and second-order horizontal 

and vertical gradients of the potential field. Gradient-based and other edge detection 

methods determine the anomaly source borders on the ground surface. In the present 

study, a linear reweighting focusing inversion method has been used to detect the vertical 

edges of a subsurface mass using gravity horizontal gradient data. With simultaneous 

evaluation the results of the proposed method and the conventional edge detection 

methods, we can accurately detect the subsurface anomaly sources boundary. The Ar
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efficiency of the linear reweighting focusing inversion method is applied for two sets of 

gravity horizontal gradient data, with and without noise, related to two synthetic models. 

The subsurface density contrasts distribution obtained from the analysis of the synthetic 

models by this inversion method has well determined the underground location of the 

farther edges of the anomaly source. This method is used to detect the underground 

edges of a chromite mass in Sabzevar. Also, to compare and validate the results, three 

conventional local phase filters namely the analytical signal, tilt angle, and total horizontal 

differential have been used to detect the anomaly source border. The results obtained 

from various methods show an acceptable conformity in chromite mass border detection. 

Based on the analysis conducted over real gravity data, the depth of the farthest 

subsurface vertical borders is between a range of 5 to 10 meters, and the highest 

horizontal expansion was around 26 meters. 

 

Keywords: Chromite, gravity horizontal gradient, linear reweighting focusing inversion.  

Abstracto 

Existen numerosos métodos para detectar el borde de la gravedad y la fuente de 

anomalía del campo magnético, la mayoría de los cuales se basan en la combinación de 

gradientes horizontales y verticales de primer y segundo orden del campo potencial. Los 

métodos de detección de bordes basados en gradientes y otros métodos determinan los 

límites de la fuente de anomalías en la superficie del suelo. En el presente estudio, se 

utilizó un método de inversión de enfoque de reponderación lineal para detectar los 

bordes verticales de una masa subterránea. La ventaja de este método sobre los Ar
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métodos convencionales es que mediante el uso de datos de gradiente horizontal de 

gravedad en el método de inversión de enfoque de reponderación, podemos detectar las 

fuentes de anomalías del subsuelo. La eficiencia del método de inversión de enfoque de 

reponderación lineal para dos conjuntos de datos de gradiente horizontal de gravedad 

se evaluó en dos modelos sintéticos (ruidoso y silencioso). La distribución de densidad 

del subsuelo obtenida del análisis de los modelos sintéticos mediante este método de 

inversión estimó bien la ubicación subterránea de los bordes más lejanos de la fuente de 

la anomalía. Este método se utiliza para detectar los bordes subterráneos de una masa 

de cromita en Sabzevar. Además, para comparar y validar los resultados, se utilizaron 

tres filtros de fase locales convencionales, a saber, la señal analítica, el ángulo de 

inclinación y el diferencial horizontal total, para detectar el borde de la fuente de 

anomalía. Los resultados obtenidos de varios métodos muestran una conformidad 

aceptable en la detección de bordes de masa de cromita. Según el análisis realizado, la 

profundidad de los bordes verticales del subsuelo más lejanos osciló entre 5 y 10 metros, 

y la expansión horizontal más alta fue de alrededor de 26 metros. 

Palabras clave: cromita, gradiente horizontal de gravedad, inversión de enfoque de 

reponderación lineal 
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1. Introduction: 

 

The ground gravity field maps are widely used for mineral resources exploration 

programs. The obtained images consist of anomalies with various intensities and 

wavelengths which are covered by the noises with various amplitudes in most cases. 

Therefore, to extract the details on the map and highlight the structures and shape of 

gravity anomaly sources with various intensities, the filtering technique has been used. 

There are various filters to enhance and estimate the causative body edges of the 

potential field. Regarding the nature of the data and the domain of changes in the intensity 

of anomalies existing in the images as well as the filtering objective, various types of filters 

have been used.   

Today, one of the filters widely used for the interpretation of gravity field data is the local 

phase filter. The most important advantage of such filters is their flexibility, in a way that, 

with a slight change in the formula of a filter, and in fact, their normalization, new and yet 

more efficient filters can be produced. Local phase filters are obtained by combining the 

in horizontal and vertical derivative of gravity data with different orders. such as the 

analytical signal method (Nabighian, 1972 & 1974), the tilt angle filter (Miller and Singh, 

1994), the total horizontal derivative (Verduzco et al., 2004), theta map (Wijns et al., 

2005), the directional tilt angle and the real part of the hyperbolic tangent function 

(Cooper, 2006), balanced profile curvature filter (Cooper, 2009), generalized derivative 

operator (Cooper and Cowan, 2011), normalized total horizontal derivative filters (Cooper, 

2006; Ma and Li, 2012), and angle of deviation of the total horizontal gradient filter 

(Ferreira et al., 2011 & 2013). 
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Yuang et al. (2014) suggested three optimized methods to balance the large eigenvalues 

of the data in a way that these eigenvalues are located on the edge of the anomaly source. 

Eshaghzadeh and Kalanatari (2017) offered the use of the Canny edge detection 

algorithm for the analysis of the potential fields. Görgün and Albora (2017) used the 

directive filter method to analyze the gravity fled. Eshaghzadeh et al. (2018) use the 

balanced generalized horizontal derivative tilt angle filter to analyze the potential field 

data. Also, the wavelet analysis method has been used to detect the border of the mass 

of gravity anomaly source (Alp et al., 2011; Ehaghzadeh et al., 2019). 

All the mentioned methods detect the subsurface causative mass border on the map and 

practically they give no idea of how deep the edges of underground structure are. Thus, 

it is needed to, besides this edge detection method, also use another qualitative-

quantitative method so that a correct interpretation of the area under evaluation and 

expansion of the subsurface source can be provided. To do so, we have used a 2-D 

inversion method to detect the vertical borders of underground mass. Numerous inversion 

methods have been provided by various researchers such as Kriging (Shamsipour et al., 

2012), inversion by gravity gradient tensor (Hou et al., 2015; Zhen-Long et al., 2019), 

conjugate gradient method (Tai-Han et al., 2017; Tian et al., 2018), the weighted method 

(Rezaie et al., 2016), Modular Feed-forward Neural Network (Eshaghzadeh and Hajian, 

2018), PSO algorithm (Eshaghzadeh and Sahebari, 2020) and damped SVD and 

Marquardt inverse methods (Eshaghzadeh and Hajian, 2020). 
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Through the error and trial and the use of various inversion methods, we finally concluded 

that the employ of reweighting focusing inversion method of the gravity horizontal gradient 

data is suitable for the detection of the edge of the subsurface anomaly source mass. The 

efficiency of this method is evaluated using two subsurface synthetic models, and in the 

following, real gravity horizontal gradient data due to a Chromite mass will be analyzed. 

2. Methodology 

In the linear inversion method, the subsurface ground is divided into a network of equal-

sized cubes (cells) with a constant density contrast (in two-dimensional mode, the ground 

is actually divided into equal-sized rectangles along the data collection profile). The 

density contrast inside each cell is the unknown parameter in the linear inverse problem. 

Figure 1 shows an example of two-dimensional subsurface ground divided into equal 

cubes. 

We need to calculate the kernel matrix (also known as the Jacobian matrix, the leading 

operator matrix, the sensitivity matrix, or the model matrix) for the gravity field. The kernel 

matrix is the calculation of the effects of gravity of each cube in Figure 1 (jth cube) in the 

point of calculation i. Therefore, considering Figure 1, in each point of calculation on the 

ground surface, N×M of gravity effect is computed.  
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Figure 1: A 2-dimentional Schematic view of subsurface ground division into equal-sized 

cubes 

 

Various formulas have been provided for the calculation of the gravity effect of the cube 

(in 3-D case) or rectangle (in 2-D case). 

The gravity effects of the rectangular block can be computed by following equation 

(Gerkense et al., 1989). 

( )
( )

2 2 2
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.log
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i j
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  
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Where, 

 

2 2 2
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In the last equations, G is the gravitational constant, ρ is density, a is the radius, z is the 

center depth of each block, and x is the distance from the point of calculation to the origin.  

Based on Figure 1, the equation of gravity linear inversion can be written as follows: 

obs
N M M NG m d× =                                                                                            (2)                      

Where G is the Kernel matrix. The Kernel matrix represents the gravity effect of gridded 

subsurface inversion domain at all points of calculation on the ground surface without 

applying the density value of each cell (blocks of grid). In the gravity inversion, the 

objective is to determine the approximate response m (density contrast of each cell) using 

the known values of G and dobs (data vector). If the observed gravity anomalies are 

produced by M subsurface cells, the gravity anomaly in the ith point will be estimated as 

follows: 

1

M

i ij j
j

d G m
=

=∑                                                                                                               (3)                                      

Where i=1,…, N id is the observed gravity at ith point, jm is the density contrast of jth 

cube, and ijG is the effect of jth subsurface cell at ith point. 

In the gravity inversion, the Kernel matrix value quickly decreases with increasing depth. 

Therefore, the reconstructed model is focused near the surface, and it is needed to use 

a depth weighting function to neutralize the reduction in kernel sensitivity with depth (Li & 

Oldenburg, 1996; Pilkington, 1997). 
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2.1 Reweighting Focusing Inversion: 

The main objective of gravity inversion problems is to find a geologically acceptable 

density model based on the sensitivity matrix and the data measured at a level of noise. 

In the present study, we aimed to determine the density distribution that corresponds to 

the vertical borders of the mass subsurface structure, so our input date will be gravity 

horizontal gradient instead of gravity data. As mentioned, gravity inversion problems are 

usually ill-posed and the solutions can be non-unique or unstable. We can solve these 

problems by the minimization of Tikhonov parametric functional (Tikhonov & Arsenin, 

1977):  

( ) ( ) ( )m m S m= +µφ ϕ µ                                                                                              (4) 

Where µ is the regularization parameter, ( )mϕ is the misfit function, and ( )S m is the 

stabilizer function or model objective function. Equation 4 can be written as follows 

(Rezaie et al., 2016): 

2 2( ) ( )dm W Gm d m= − +µφ µ                                                                                           (5)                                             

dW is the data weighting matrix which is defined as ' '(1/ ,...,1/ )d i NW diag= σ σ    , and '
iσ is the 

standard deviation of noise in the ith data. In an inversion, the objective function is 

generally defined as follows (Oldenburg & Li, 2005): 

2 2( ) ( )m refm Gm d W m m= − + −φ µ                                                                             (6)                              

 Where Wm is the weighting matrix for the model’s parameters (model weighting matrix). 

To produce compact solutions, we select a stabilizer equal to the minimum support 
functional as follows (Portniaguine & Zhdanov, 1999): 
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2

2 2
1

( )
M

j

j j

m
S m

m=

=
+∑ β

                                                                                                   (7)        

Where β focusing parameter is a predefined small positive number so that it can prevent 

the uniqueness of the response when mj  =0, and mj is the jth element of vector m. 

By placing the minimum norm stabilizing functional in Equation 5, we will have: 

2
2

2 2
1

( ) min
M

j

j j

m
m Gm d

m=

= − + =
+∑φ µ
β

                                                                           (8) 

This problem is solved by the reweighting optimization (Mahani et al., 1998). To calculate 

the various sensitivities of the data to the model’s parameters, a diagonal weight matrix (

ˆ
mW ) is considered for the model’s parameters (Portniaguine & Zhdanov, 2002). Mahani 

et al. (1998) and Portniaguine & Zhdanov (1999) indicated that the weight matrix can be 

computed from the root of the cumulative sensitivity matrix:  

    ˆˆ
mW S=                                                                                                      (9)                    

Where Ŝ is the diagonal matrix that is formed by data cumulative sensitivity for the 

parameter mj, set as the following equation (Portniaguine & Zhdanov, 2002): 

( )2

j ij
ij

d
S G

m
= = ∑

δ
δ

                                                                                                               (10)          

In Equation 10, ijG is the element of the forward operator matrix (Kernel matrix). The 

diagonal elements of the matrix ˆ
mW    are determined by { }1 2, ,..., ,...,

mj Nω ω ω ω    . Also, the 

depth weighting matrix can be computed by 1(1/ ( ) ,...,1/ ( ) )m MW diag z z= λ λ . In this Ar
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equation, zj is the depth of the jth parameter of the model, and the optimal value of λ for 

the reweighting focusing inversion method in the present study is equal to 0.5. 

Substituting the weighting matrix in Equation 8, and choosing mref=0, we will have: 

2 22

2 2
1

ˆˆ( ) min
M

j j

j j

m
m Gm d

m=

= − + =
+∑

ω
φ µ

β
                                                                                      (11)        

Where ˆ
dG W G=    and ˆ

dd W d=    . The reweighting matrix ˆ ( )W m   will be as follows 

(Portniaguine & Zhdanov, 2002):  

2 2 2 2ˆ ( ) mW m diag m I Wβ − = +                                                                                                      (12)                                          

Where diag is the diagonal matrix produced by 2 2m + β , and I is the singular matrix. Also: 

1ˆ ( )wm W m m−=                                                                                                                           (13)     

and  

ˆ ˆ ( )WG GW m=                                                                                                                                  (14)           

Equation 11 is written as follows: 

2 2ˆ( )w w w wm G m d m= − +φ µ                                                                                                  (15)                                                          

Equation 15 is similar to the classical minimum norm optimization problem whose 

solutions are based on the regularization theory (Tikhonov et al., 1977). The only 

prominent difference is the new progressive modeling operator, which is ˆ ˆ ( )WG GW m= , that 

depends on the wm and changes during the inversion (Portniaguine & Zhdanov, 2002). To Ar
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obtain acceptable results, the maximum and minimum values are defined for the model’s 

parameter ([ ]min max,m m    ) (Portniaguine & Zhdanov, 2002; Portniaguine & Zhdanov, 1999). 

Both expressions of the objective function (Equation 15) are 2-norm and thus, 

differentiable. The prevalent method to solve Equation 15 is using the least squares 

method. Then, Equation 15 is equal to: 

( )
( )

ˆ( )

ˆ

T

w w w

T
w w w w

m G m d

G m d m m

= −

− +

φ

µ
                                                                                                      (16 ) 

ˆ( )
ˆ ˆ ˆ

T T T T
w w w w w w w

T T T
w w w w

m G m G m G m d

d G m d d m m

= −

− + +

φ

µ
                                                                                               (17)      

Regarding the dominant relationships about gradient calculation, that is: 

( )1
2

T
x

T
x

T
x

X Y Y
XY Y

X Y X Y X

∇ =

∇ =

∇ =

                                                                                                       (18)                                    

By computing the derivative of Equation 17 with respect to the model parameter mw, and 

setting the derivative equal to zero, we will have: 

( ) 2

ˆ ˆ 2

Tw
w w w

w

T T
w w w

m G G m
m

G d dG m

∂
= −

∂

− +

φ

µ

                                                                                                                    (19)                 

ˆ2 ( ) 2T T
w w w wm G G G d+ =µ                                                                                          (20 )       

As a result, we will have: 
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( ) ( )1 ˆ
w w

T T
w wm G G G d

−
= + µ                                                                                         (21 )                    

mw is computed using Equation 21. mw and ˆ ( )W m  are updated in each iteration until m 

satisfies the iteration convergence criterion (predetermined acceptable error). 

The value of µ of the regularizing parameter is computed for each iteration as follows: 

2

2

ˆ
w w

w

G m d

m

−
=µ                                                                                                       (22)   

During the inversion, for each iteration, 2-norm error between the observed and computed 

gravity horizontal gradient data are estimated: 

( )2

1
( )

N
cal obs

k i i
i

Q d d d
=

= −∑                                                                                                (23)     

Where, cald  is the computed gravity horizontal gradient corresponding to parameters of 

the estimated model (subsurface density distribution) in each iteration and obsd is the 

observed or measured gravity horizontal gradient field. The stopping criteria of the 

inversion process are defined as follows: 

1) The 2-norm values of observed and computed gravity horizontal gradient 

difference in each iteration be less than the predetermined value, i.e., k initialQ Q≤ . 

2) The 2-norm values of observed and computed gravity horizontal gradient 

difference in one iteration be higher than the previous iteration, i.e., 1k kQ Q −≥   . 

3) The number of considered iterations for the inversion process be completed. 
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The modeling algorithm by the reweighting focusing inversion method is represented in 

Table 1. 

3 Analysis of Gravity Horizontal Gradient Data for Synthetic Models 

In this chapter, two synthetic models are considered, and the computed gravity horizontal 

gradient data for these models will be analyzed using the reweighting focusing inversion 

method: 

3.1 Synthetic Model No.1 

Figure 2(a) represents the measured gravity field in 15 points on a gridded underground 

which has been divided into 150 cells as 9 of them have a density contrast of 1000 Kg/m3 

(Figure 2b). The area with density difference is located at a depth of 15 to 30 meters, with 

a length of 60 meters along the profile (120 to 180 meters far from the starting point). The 

distance between the data sampling points (length of each cell) is 20 meters and the 

length of the profile is 280 meters.  

 

The value of the considered initial error between the computed gravity gradient and the 

inverted gravity gradient, as one of the stopping criteria for iterations in the inversion 

process, is equal to 0.004 mGal/m, and 0.001  =β . Also, we set the number of iterations 

for the inversion process as 30 repetitions. 
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Table 1: Reweighting focusing Inversion algorithm 

Inputs: G initialQ   ، maxm   ، minm  ، dW   ، β   ،d  ، priorm   ، 

Stage 1: place k=1 ، (0)
priorm m=   ،calculate mW    

Stage 2: calculate ˆ
dd W d=  ، ˆ

dG W G=   

Stage 3: Calculate ( )ˆ ( ) kW m  ، ( ) ( )ˆ ˆ ( )k k
WG GW m=   ، ( ) 1 ( ) (k 1)ˆ ( )k k

wm W m m− −= ،

( )kµ  

Stage 4: Calculate ( ) ( )1( ) ˆ
w w

k T T
w wm G G G d

−
= + µ    

Stage 5: Calculate ( ) ( ) ( )ˆ ( )k k k
wm W m m=  

Step 6: Apply density limits in a way that: ( )
min max

km m m≤ ≤  

Stage 7: Place k=k+1 

Step 8: Check the stop criteria, if satisfied, stop the process, 

otherwise, go to step 3. 

Output: ( )km  
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Figure 2: a) Alternations curve of the gravity field due to b) supposed subsurface model 

with a density distribution of 1000 kg/m3 

The changes in the gravity horizontal gradient field of the synthetic model has been shown 

by the red curve in Figure 3(a). The subsurface density distributions resulted of the 

inversion with a different sign have been taken place on the vertical borders of the 

anomaly source (Figure 3(b)). The gravity horizontal gradient field obtained from the 

inversion is depicted in Figure 3(a) by the circle symbols and blue dashed lines. 

As seen in Figure 3(b), the maximum and minimum values of gravity horizontal gradient 

are located on the vertical borders of the anomaly source mass, and the positive and 

negative density distributions corresponding to these values have clearly detected the 

depth of vertical borders. The gravity gradient is commonly used for edge detection. 

Although these density distributions could not to estimate the depth expansion of the 

border clearly, they able to detect the depth of the top surface of the anomaly body. 

As seen in Figure 4, the 2-norm error value between the computed gravity gradient and 

the gravity horizontal gradient data obtained from the inversion reduces drastically in the Ar
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11th iteration and reaches to 0.0036 mGal/m in the 12th iteration. This value is lower than 

the initial assumed error value and as a result, the inversion process was stopped.  

 

Figure 3: a) the computed gravity horizontal gradient and the horizontal gradient data 

obtained from the inversion according to b) Subsurface density distribution obtained 

from the inversion for the synthetic model No.1 

 

Figure 4: changes in the 2-norm errors between the computed gravity horizontal 

gradient and obtained ones from the inversion in each iteration for the synthetic model 

No.1 Ar
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To examine the efficiency of the reweighting focusing inversion method with noise, 20% 

random noise is added to the theoretical gravity horizontal gradient field in Figure 2(a), 

based on the following equation: 

( )( ) ( )[1 ( 0.5) 0.2]rand i i id x d x RAN= + − ×                                                                                              (24)                                               

 The value of the considered initial error between the computed gravity horizontal gradient 

and the inverted ones, as one of the stopping criteria for iteration in the inversion process, 

is equal to 0.005 mGal/m, and    0.001=β . Also, 40 repetitions have been considered as 

iteration number during inversion process. The noise contaminated gravity horizontal 

gradient field due to the synthetic model are depicted by the red curve in Figure 5(a). The 

recovered subsurface density distributions from the inversion with a different sign have 

been lied on the vertical borders of the anomaly source (Figure 5(b)). The inverted gravity 

horizontal gradient field is illustrated in Figure 5(a) by the circle symbols and blue dashed 

lines. 

As seen in Figure 5(b), the maximum and minimum values of gravity horizontal gradient 

are located on the vertical borders of the anomaly source mass, and the positive and 

negative density distributions corresponding to these values have partially detected the 

depth of vertical borders.  

As seen in the last figure, due to the presence of the noise, several small density 

distributions with low amplitude have been also detected after inversion. Also, the positive 

density distribution has detected the depth expansion of the source vertical border better 

than the negative density distribution. As shown in Figure 6, the value of 2-norm error 
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between the computed gravity horizontal gradient and inverted gravity horizontal gradient 

data shows a sharp decrease in the 16th iteration and reaches 0.0049 mGal/m, which is 

lower than the initial assumed error value, and as a result, the inversion was stopped in 

the 16th iteration.  

 

Figure 5: Noise corrupted synthetic gravity horizontal gradient and inverted gravity 

horizontal gradient due to b) recovered subsurface density distribution for the model 

No.1 

 

Figure 6: changes in the 2-norm error between computed noisy gravity horizontal 

gradient and inverted ones in each iteration for the synthetic model No. Ar
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3.2 Synthetic Model No.2 

Figure 7(a) represents the estimated gravity field in 20 points on a gridded subsurface 

that is discretized into 20×10=200 rectangular prisms with a size of 20 meters in x 

direction and 5 meters in z direction, as 16 of them have a density of 2000 Kg/m3 (Figure 

7(b)). The area with a density contrast of 2000 Kg/m3 is located at a depth of 15 to 35 

meters, with a length of 100 meters along the profile (140 to 240 meters from the starting 

point). The distance between the data sampling points (length of each cell or block) is 20 

meters, therefore the length of the profile is 380 meters.  

 

Figure 7: a) Alternations curve of the gravity field due to b) supposed subsurface model 

with a density distribution of 2000 kg/m3 (synthetic subsurface model No.2) 

The value of the defined initial error between the computed gravity horizontal gradient 

and the inverted ones, as one of the stopping criteria for iteration in the inversion process, 

is equal to 0.04 mGal/m, and    0.01=β . Also, 50 repetitions have been considered as 

iteration number during inversion process.  
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The changes in the gravity horizontal gradient field of the synthetic model No.2 is shown 

by the red curve in Figure 8(a). Since the vertical border of the anomaly source is stepped, 

as seen in Figure 8(b), the maximum and minimum values of gravity horizontal gradient 

have almost conformity to the middle of the stepped border of the anomaly source mass. 

Nonetheless, the subsurface density distributions resulted from the inversion, where they 

have the different sign, have been located on the farther vertical borders of the anomaly 

causative mass and have been approximately detected their depth expansions (Figure 

8(b)). Therefore, using the maximum and minimum values of gravity gradient as an edge 

detector of the anomaly source can include errors. The inverted gravity horizontal gradient 

data is shown in Figure 8(a) by the circle symbols and blue dashed lines. 

As shown in Figure 9, the value of error between the computed gravity horizontal gradient 

and the inverted ones is 0.0357 mGal/m in the 17th iteration, which is lower than the initial 

assumed error value, and as a result, the inversion was stopped in this iteration.  
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Figure 8: a) computed gravity horizontal gradient and the inverted gravity horizontal 

gradient due to b) recovered subsurface density distribution for model No.2 

 

Figure 9: Alterations in the 2-norm errors between estimated gravity horizontal gradient 

and inverted gravity horizontal gradient in each iteration for the synthetic model No.2 

We have studied the proficiency of the reweighting focusing inversion method by adding 

20% random noise to the theoretical gravity horizontal gradient data in Figure 7(a), based 

on Equation 24. Ar
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Figure 10(a) shows the gravity horizontal gradient field of the synthetic model No.2 by the 

red curve as is noise corrupted. The predefined error value was set as 0.06 mGal/m and 

0.01=β . Also, 50 repetitions were assumed for the iteration number during the inversion 

process. The obtained results of the inversion, that is subsurface density distribution with 

a different sign are placed on the vertical borders of the anomaly source (Figure 10(b)). 

The inverted gravity horizontal gradient field corresponding to the underground density 

distribution has been depicted in Figure 10(a) by the circle symbols and blue dashed lines. 

The interpretation of inversion results due to noise corrupted gravity horizontal gradient 

data is similar generated ones without noise. 

As seen in the figure 10(b), due to the presence of the noise, several small density 

distributions with low amplitude in the underground sub-space have been detected. 

As shown in Figure 11, the value of 2-norm error between the computed gravity gradient 

and the inverted horizontal gradient is 0.0506 mGal/m in the 18th iteration, which is lower 

than the initial assumed error value, and as a result, the inversion was stopped in this 

iteration.  
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Figure 10: Noise corrupted synthetic gravity horizontal gradient and inverted gravity 

horizontal gradient due to b) recovered subsurface density distribution for model No.2 

 

 

Figure 11: Alterations in the 2-norm errors between estimated noisy gravity horizontal 

gradient and inverted gravity horizontal gradient in each iteration for the synthetic model 

No.2 
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4 Sabzevar Chromite 

In this chapter, we will get familiar with the location and geological structure of the area 

under investigation in Sabzevar, and then, we will analyze the gravity horizontal gradient 

data due to a subsurface Chromite mass. 

4.1 Location and Geology of the Studied Zone 

The study area is located in the North 40th zone of UTM coordinates between the 

longitudes of 607000 to 607120 meters in the west-east direction and the latitudes of 

4012200 and 4012300 meters in the south-north direction, between the cities of Sabzevar 

and Neishabur, which includes an area of about 12000m2. This area is located in the 

Sabzevar zone which take place interior the large structural zone of Central Iran. In a 

broader view, this area is located between two major faults and infrastructures, Darouneh 

(in the south) and Binaloud fault (in the north). The Sabzevar zone is connected to the 

Binalood zone from the north and the Loot block zone from the south. These connections 

are tectonic and faulted. 

In fact, the Sabzevar region is a part of the Ophiolitic region that extends from the east to 

the south of the country. The structural form of the study area is undoubtedly influenced 

by faults such as Darouneh and Taknar. The construction direction of this area follows the 

Darouneh fault direction.  

The Sabzevar area contains a large number of chromite masses in the form of strings 

and large and small lenses. The igneous masses of this area are stretched in an almost 

east-west direction and are primarily composed of alkaline rocks. Chromite masses are 

Ar
tíc

ul
o 

en
 p

re
ns

a/
Ar

tic
le

 in
 p

re
es



spread irregularly but with a certain concentration in these rocks. The amount of their 

alloy is very variable. Burrows et al. (1983) attribute the age of the Ophiolitic complexes 

to the Upper Cretaceous (Koniasian). 

In the study area, the limited rock outcrops include ultrabasic igneous rocks that are 

mostly transformed into serpentine and minerals such as talc and vermiculite (Aghajani, 

2012). Figure 12 shows the geological map of the area under study. 

 

 

Figure 12: the geological map of the study area in Sabzevar zone 

 

4.2 Gravity Field of the Study Area 

Figure 13 shows the Bouguer gravity field of the study area in Sabzevar. As can be seen 

in the figure 13, the gravity field has been measured along 6 profiles in the north-south 

direction and at 56 stations with an approximate distance of ten meters (black circles in 

Figure 13. Bouguer gravity field include the regional and local anomalies and by 
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processing the Bouguer gravity field data can detect the positive and negative local 

anomalies. 

 

 

Figure 13: Bouguer gravity field map of the area under investigation as the gravity 

reading stations have been shown on it by the black circles 

 

Therefore, it is necessary to remove the regional field from the Bouguer gravity field using 

the 2-degree surface trend method so that the residual gravity anomaly will be obtained. 

Almost, all the qualitative and quantitative analyses are performed on the residual gravity 

field. 

Figure 14 shows the produced residual gravity field using the second-degree surface 

trend. Due to the high density difference between the Chromite host rock and the 

surrounding rocks, we expect chromite-bearing zones to be highlighted on the residual 

gravity anomaly map with a positive gravity value. As seen in the residual gravity anomaly Ar
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map in Figure 14, a region with the maximum positive gravity field value has been 

detected in the southern part, which most likely has a source body that forms the chromite 

host rock. 

 

Figure 14: The residual gravity map of the area under investigation. The location and 

direction of the profile AA’ has been shown on the positive gravity anomaly. 

 

For 2-D modeling of the subsurface causative mass, we analyze the residual gravity field 

variations along the profile AA′ which runs across the Chromite mineral mass in an 

approximately W–E direction as is shown in figure 14. Data sampling has done in 11 

points with an interval of 4 m over the profile AA′ with a length of 40 m. 

4.3 Analysis of Gravity Horizontal Gradient 

To analyze the real gravity horizontal gradient along the profile AA՜ (green curve in Figure 

16(a)) using the reweighting focusing inversion, the number of iterations and the value of Ar
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2-norm errors between the observed gravity horizontal gradient and inverted ones were 

set to 25 repetitions and 0.0001 mGal/m, respectively.  

Figure 15 shows the changes of 2-norm errors with the increase in the number of 

iterations. The 2-norm values reached 0.00015 in the 12th iteration and obtained 0.000074 

in the 13th iteration, which is lower than the initial assumed error value. Therefore, the 

optimized inverted response belongs to the computed density distribution in the 13th 

iteration. The variations of the gravity horizontal gradient corresponding to the recovered 

density contrast distributions of the inversion is shown in figure 16(b) as is depicted with 

the blue dashed curve in Figure 16(a).  

As seen in Figure 16(a), a mass with negative values has been located at a depth about 

5 meters, 33 meters from the first data sampling point, and another one with positive 

values has been settled at a depth between 5 to 10 meters, approximately 7 meters far 

from the starting point. Based on the obtained results, the maximum horizontal expansion 

of the anomaly source is around 26 meters.  

 

Figure 15: 2-norm error changes in each iteration during real gravity gradient data 

inversion 
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Figure 16: a) Variations of the observed and produced gravity horizontal gradient fields, 

b) Distribution of density obtained from the reweighting focusing inversion of gravity 

horizontal gradient along profile AA՜  

5 Detection of the Gravity Anomaly Border Using the Conventional Methods 

In this chapter, three common edge detector filters namely analytic signal, tilt angle, and 

total horizontal derivative were used to detect the anomaly source edges as we can 

compare these results with the estimated border from the reweighting focusing inversion 

method. Because these filters are applied on the gridding of the gravity field, we can 

determine the horizontal expansion of the subsurface source through analysis of the 

obtained maps from these edge detection filters. 

5.1 Analytic Signal 

Nabighian developed an automated method for the interpretation of 2-D magnetic 

anomalies based on the analytic signal in some articles from 1972 to 1974. The maximum 

value of the analytic signal take place on the anomaly causative mass. Using this property Ar
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of the analytic signal, the location of the source and its edges can be detected. The 

analytic signal function for the gravity data (T) is defined as: 

( )
22 2T T TA x

x zy
  + 

∂ ∂ ∂ = +    ∂ ∂ ∂   
                                                                                                  (25) 

 

Figure 17 shows the analytic signal map for the study area. As was mentioned, the 

maximum values of the analytical signal are located on the anomaly source. We have 

considered values greater than 0.05 mGal/m as the maximum values of the analytical 

signal filter. As depicted in Figure 17, a contour line of 0.05 mGal/m has been drawn 

around the anomaly related to the chromite mass, which is assumed to be the border of 

the subsurface source. The dashed line shown in Figure 17 almost corresponds to the 

direction of profile AA՜. The length of this dashed line is approximately 25 meters. 

Therefore, the distance between the edges of the anomaly source along this dashed line 

is about 25 meters, which closely matches with the distance of the edges which estimated 

by the inversion method (26 meters). 
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Figure 17: Analytic signal map area under study. The dashed line is almost 

corresponding to the direction of profile AA՜ shown in figure 14. 

 

5.2 Tilt Angle 

A prevalent local phase filter is the tilt angle (deviation angle) (Miller and Singh, 1994) 

which can be easily computed for both frequency and the space domains, and is defined 

as follows: 

 

1

2 2

/    
(( ) ( ) )

f zT tan
f f
x y

−

 
 

∂ ∂ =
 ∂ ∂+ ∂ ∂ 

                                                                                      (26) 
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Where f is gravity or magnetic field. The tilt angle gradient has interesting properties. As 

a dimensionless ratio, it responds very well to deep and shallow sources and has a wide 

range of variations for sources at the same level. For a source with positive density, the 

tilt angle is above the positive anomaly. Near the edges, where the vertical derivative is 

zero and the horizontal derivative is the largest, the value of the tilt angle is zero, and 

outside the subsurface anomaly zone, it is negative. 

 

Figure 18 shows the tilt angle of the study area in Sabzevar. The contour line with the 

zero radian indicates the border of the subsurface sources, as has been drawn on the tilt 

angle map in figure 18. As observed in Figure 18, the tilt angle filter could not separate a 

confined part as the border around the gravity anomaly related to the chromite mass. 

However, since the zero values of tilt angle detect the anomaly source edge, we have 

connected these values in the east-west direction on the anomaly by a dashed line (Figure 

18). This line is 30 meters long which indicates that the horizontal expansion of the 

subsurface anomaly source in the east-west direction is 30 meters. Although the direction 

of the dashed line in Figure 18 is not in the same direction as profile AA´, the value of the 

area for the subsurface mass obtained by the tilt angle is acceptably close to the value 

obtained by the reweighting focusing inversion method.  

 
Ar

tíc
ul

o 
en

 p
re

ns
a/

Ar
tic

le
 in

 p
re

es



 

Figure 18: tilt angle map obtained from the gravity data analysis for the study area in 

Sabzevar 

 

4.3 Total Horizontal Derivative: 

The maximum value of horizontal derivatives, which is also known as the total horizontal 

derivative which leads to better detection of anomaly edges in any direction, is defined as 

follows (Cooper, 2006): 

 

2
2( )   tot

f ffx
x y

 ∂ ∂ = +   ∂ ∂  
                                                                                                                     (27) 
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Figure 19 shows the map obtained from the total horizontal derivative executed on the 

gravity data related to the study area in Sabzevar. Similar to the tilt angle, this filter also 

has failed to create a closed curve of its maximum values around the positive anomaly of 

the chromite mass as the source edge, and it could not detect a specific border. The curve 

with the same contour of 0.1 mGal/m is shown on the total horizontal derivative map. The 

maximum values of this filter are located in the middle of this level curve. Similar to Figure 

18, a dashed line in the east-west direction connects the maximum values between the 

0.1 mGal/m contour lines that correspond to the mass border. This line, which indicates 

the distance between the eastern and western borders of the mass, is around 34 meters 

long. Therefore, this filter has estimated the horizontal outspread of causative mass 8 

meters higher than the value obtained from the reweighting focusing inversion method.  

 

 

Figure 19: Total horizontal derivative map obtained from the gravity data analysis for the 

study area in Sabzevar 
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6. Estimation of Chromite Mass Depth 

 

In this chapter, two common depth estimation methods, namely the Euler Deconvolution 

and power spectrum (energy density spectrum) methods are used to estimate the depth 

of the chromite mass. Figure 20 shows the estimated depth by the Euler deconvolution 

method for a 5×5 window length on the residual gravity field. As seen in this figure, the 

depth of the top surface of the chromite mass is between 5 to 10 meters. 

The power spectrum method estimates the average depth of the top surface of the 

anomaly source mass about 11.5 meters (the intersection of the horizontal blue line with 

the depth axis in Figure 21). It should be noted that the power spectrum method uses all 

the existing wavelengths for estimation of the depth of the top surface of the source 

masses in the study area, so the overestimation of the depth of the top surface is 

expected.  

 

Ar
tíc

ul
o 

en
 p

re
ns

a/
Ar

tic
le

 in
 p

re
es



 

Figure 20: Resulted depth by the Euler Deconvolution method drawn on the residual 

gravity field map. 

 

 

Figure 21: Analysis of the average depth of the top surface of chromite mass using the 

power spectrum method 
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7. Non-linear Inverse Modelling 

To obtain the shape of the subsurface chromite mass, we used Model Vision software for 

a two-dimensional non-linear inversion of the gravity field along a profile with a 100 m 

long, which was almost in the same direction with the profile AA՜. Data sampling was done 

at 11 points at a distance of 10 meters in the direction of the gravity profile. The black 

curve in Figure 22 shows the gravity field changes along this profile. The structure 

obtained from the nonlinear inversion for the underground mass is shown in Figure 22. 

The blue curve in Figure 22 shows the inverted gravity field corresponding to the 

subsurface mass. Also, the obtained 2-norm error between observed and computed 

gravity values is 0.41 mGal/m. 

 

Based on Figure 22, the depth of the top surface of the mass is around 5 meters and the 

highest value of the horizontal expansion is 21 meters. The eastern border of the mass is 

shown as a point at a depth of 5 meters, and the western border is a vertical line, almost 

7 meters long (5 to 12 meters deep). 
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Figure 22: 2-D non-linear inverse modeling in the direction of profile AA՜ 

 

8. Conclusion 

Analysis of the synthetic models indicates that the use of gravity horizontal gradient data 

in the reweighting focusing inversion algorithm produces distributions of positive and 

negative density which correspond to the farthest vertical borders of subsurface mass, 

and can relatively estimate the deep expansion of the mass. The efficiency of the 

suggested method in the present study in revealing the underground anomaly source 

mass border was investigated with two synthetic models. The results indicate that density 

distributions obtained from the reweighting focusing inversion algorithm are well focused 

on the top part of the subsurface structure edges with the highest distance. Thus, by the 

use of this method, the underground depth and location of the farthest edges of an 

underground structure can be detected. 

The inversion method was used for the analysis of the gravity horizontal gradient of a 

chromite mass. The density distributions estimated a depth of 5 meters for the eastern Ar
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edge and 5 to 10 meters for the western edge of the subsurface mass, which are 

approximately similar to the results obtained by the non-linear inverted modeling (Figure 

22). Three common edge detection filters were used for validation, which estimated the 

horizontal expansion of subsurface mass to compare with the value obtained from the 

inversion (26 meters). The conventional depth estimation methods have estimated the 

depth of the top surface of the chromite mass in the range between 5 to 10 meters. 

Therefore, the location of the subsurface density distributions is almost correspondent to 

the top surface of the mass. Also according to the results, it can be concluded that the 

highest horizontal expansion belongs to the top surface of the mass. The non-linear 

inverse modeling also estimated the expansion of the top surface of the subsurface mass 

about 21 meters which show a good conformity with the obtained result from proposed 

method. It should be noted that the analyses made for the depth and expansion 

evaluation of the underground mass are related to the direction of the data sampling 

profile.  

 

The use of the method developed in the present study, alongside other qualitative and 

quantitative maps, can effectively help the analyzer with the analysis of the gravity field 

and detection of the parameters of the underground structure.  
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