Interplanetary-magnetosphere coupling during intense geomagnetic storms at solar maximum
Contenido principal del artículo
Resumen
Durante el intervalo del 16 de agosto de 1978 al 28 de diciembre de 1979. 90% de las tempestades geomagnéticas intensas (Dst < -l00nD'fueron precedidas por la llegada a 1AU de ondas de choque interplanetarias rápidas, conforme fueron identificadas con datos de plasma y campos magnéticos colectados por la nave espacial ISEE-3. En relaci6n con estos eventos, discutiremos las estructuras interplanetarias asociadas a campos magnéticos Bz negativos. de gran amplitud y larga duraci6n. que se consideran como la causa principal de las tempestades intensas. Presentaremos también un resumen de las funciones de acoplamiento interplanetario-magnetosféricas, basadas en el proceso de reconexi6n en la magnetopausa terrestre. Terminaremos con una revisi6n sucinta de la evoluci6n a largo plazo de las tempestades geomagnéticas intensas, tales como las mostradas en las distribuciones estacionales y del ciclo solar.
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
AKASOFU, S. I. and S. CHAPMAN, 1963. The development of the main phase of magnetic storms. J. Geophys. Res., 68, 125. DOI: https://doi.org/10.1029/JZ068i001p00125
ARNOLDY, R. L., 1971. Signature in interplanetary medium for substorms. J. Geophys. Res., 76, 5189. DOI: https://doi.org/10.1029/JA076i022p05189
BAKER, D. N., E. W. HONES, Jr., J. B. PAYNE and W. C. FELDMAN, 1981. A high-time resolution study of interplanetary parameter correlations with AE. Geophys. Res. Lett., 8, 179. DOI: https://doi.org/10.1029/GL008i002p00179
BAME, S. J., J. R. ASBRIDGE, H. E. FELTHAUSER, J. P. GORE, H. L. HAWK and J. CHAVES, 1978. ISEE-C solar wind plasma experiment, IEEE. Trans. Geosci. Electron, E-16, 160. DOI: https://doi.org/10.1109/TGE.1978.294538
BARGATZE, L. F., D. N. BAKER and R. L. McPHERRON, 1986. Solar wind-magnetosphere energy input functions. In: Solar Wind Magnetosphere Coupling. (Edited by Y. Kamide and J. A. Slavin), pp. 101-109, Terra Scientific, Tokyo, Japan. DOI: https://doi.org/10.1007/978-94-009-4722-1_7
BURTON, R. K., R. L. Mc PHERRON and C. T. RUSSELL, 1975. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80, 4204. DOI: https://doi.org/10.1029/JA080i031p04204
CLUA de GONZALEZ, A. L., W. D. GONZALEZ and B. T. TSURUTANI, 1991. Periodic variation in the geomagnetic activity: A study based on the Ap index. J. Geophys. Res. (submitted).
CROOKER, N. U., J. FEYNMAN and J. T. GOSLING, 1977. On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res., 83, 1933. DOI: https://doi.org/10.1029/JA082i013p01933
DOYLE, M. A. and W. J. BURKE, 1983. S3-2 measurements of the polar cap potential. J. Geophys. Res., 88, 9125. DOI: https://doi.org/10.1029/JA088iA11p09125
DUNGEY, J. W., 1961. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6, 47. DOI: https://doi.org/10.1103/PhysRevLett.6.47
FRANDSEN, A. M. A., B. V. CONNOR, J. VAN AMERSFOORT and E. J. SMITH, 1978. The ISEE-C Vector helium magnetometer. IEEE Trans. Geosci. Electron., GE-16, 195. DOI: https://doi.org/10.1109/TGE.1978.294545
GOLD, T., 1962. Magnetic storms. Space Sci. Rev., 1, 100. DOI: https://doi.org/10.1007/BF00174637
GONZALEZ, W. D., 1990. A unified view of solar wind-magnetosphere coupling functions. Planet. Space Sci., 38.627. DOI: https://doi.org/10.1016/0032-0633(90)90068-2
GONZALEZ, W. D. and F. S. MOZER, 1974. A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res., 79, 4186. DOI: https://doi.org/10.1029/JA079i028p04186
GONZALEZ, W. D. and A.-L. C. GONZALEZ, 1981. Solar wind energy and electric field transfer to the Earth’s magnetosphere via magnetopause reconnection. Geophys. Res. Lett. 8, 265. DOI: https://doi.org/10.1029/GL008i003p00265
GONZALEZ, W. D. and B. T. TSURUTANI, 1987. Criteria of interplanetary parameters causing intense magnetic storms (Dst < -100nT). Planet. Space Sci., 35. 1101 DOI: https://doi.org/10.1016/0032-0633(87)90015-8
GONZALEZ, W. D., B. T. TSURUTANI, A. L. C. GONZALEZ, E. J. SMITH, F. TANG and S. J. AKASOFU, 1989. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979). J. Geophys. Res. 94, 8835. DOI: https://doi.org/10.1029/JA094iA07p08835
GONZALEZ, W. D., L. C. LEE and B. T. TSURUTANI, 1990a. Comment on the polarity of magnetic clouds. J. Geophys. Res., 95, 17267. DOI: https://doi.org/10.1029/JA095iA10p17267
GONZALEZ, W. D., A. L. C. GONZALEZ and B. T. TSURUTANI, 1990b. Dual-Peak solar cycle distribution of intense geomagnetic storms. Planet Space Sci., 38, 181. DOI: https://doi.org/10.1016/0032-0633(90)90082-2
GONZALEZ, W. D., B. T. TSURUTANI and A. L. CLUA-GONZALEZ, 1991. Influence of "Solar active-coronal hole" regions on intense interplanetary and geomagnetic activity. J. Geophys. Res. (submitted).
GOSLING, J. T., D. J. McCOMAS, T. L. PHILLIPS and S. J. BAME, 1991. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res., 96. 7831. DOI: https://doi.org/10.1029/91JA00316
HEWISH, A. and S. BRAVO, 1986. The sources of large-scale heliosphere disturbances. Sol. Phys., 106, 185. DOI: https://doi.org/10.1007/BF00161362
HOLZER, R. E. and J. A. SLAVIN, 1982. An evaluation of three predictors of geomagnetic activity. J. Geophys. Res., 87, 2558. DOI: https://doi.org/10.1029/JA087iA04p02558
KAN, J. R. and L. C. LEE, 1979. Energy coupling functions and solar wind-magnetosphere dynamo. Geophys. Res. Lett., 6, 577. DOI: https://doi.org/10.1029/GL006i007p00577
KLEIN, L. W. and L. F. BURLAGA, 1982. Magnetic clouds at 1AU. J. Geophys. Res., 87, 613. DOI: https://doi.org/10.1029/JA087iA02p00613
MARUBASHI, K., 1986. Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res., 6(6), 335. DOI: https://doi.org/10.1016/0273-1177(86)90172-9
McCOMAS, D. J., J. T. GOSLING, S. J. BAME, E. J. SMITH and H. V. CANE, 1989. A test of magnetic field draping induced B z perturbations ahead of fast coronal mass ejecta. J. Geophys. Res., 94, 1465. DOI: https://doi.org/10.1029/JA094iA02p01465
MURAYAMA, T., 1974. Origin of the semiannual variation of geomagnetic Kp indexes. J. Geophys. Res., 79. 297. DOI: https://doi.org/10.1029/JA079i001p00297
MURAYAMA, T. and K. HAKAMADA, 1975. Effects of solar wind parameters on the development of magnetospheric substorms. Planet. Space Sci., 23, 75. DOI: https://doi.org/10.1016/0032-0633(75)90069-0
MURAYAMA, T., 1986. Coupling between solar wind and the Dst index. In: Solar Wind-Magnetosphere Coupling. Edited by Y. Kamide and J. A. Slavin, pp. 119-126. Terra Scientific, Tokyo, Japan. DOI: https://doi.org/10.1007/978-94-009-4722-1_9
PERREAULT, P. and S. I. AKASOFU, 1978. A study of geomagnetic storms. Geophys. J. R. Astron. Sci., 54, 547. DOI: https://doi.org/10.1111/j.1365-246X.1978.tb05494.x
REIFF, P. H., R. W. SPIRO and T. W. HILL, 1981. Dependence of polar cap potential drop on interplanetary parameters. J. Geophys. Res., 86, 7639. DOI: https://doi.org/10.1029/JA086iA09p07639
ROSTOKER, G., L. LAM and W. D. HUME, 1972. Response time of the magnetosphere to the interplanetary electric field. Can. J. Phys., 50, 544. DOI: https://doi.org/10.1139/p72-073
RUSSELL, C. T. and R. L. McPHERRON, 1973. Semiannual variation of geomagnetic activity. J. Geophys. Res., 78, 92. DOI: https://doi.org/10.1029/JA078i001p00092
TSURUTANI, B. T. and C. I. MENG, 1972. Interplanetary magnetic field variations and substorm activity. J. Geophys. Res., 77, 2964. DOI: https://doi.org/10.1029/JA077i016p02964
TSURUTANI, B. T., C. T. RUSSELL, J. H. KING, R. D. ZWICKL and R. P. LIN, 1984. A Kinky heliospheric current sheet: cause of CDAW 6 substorms. Geophys. Res. Lett., 11, 339. DOI: https://doi.org/10.1029/GL011i004p00339
TSURUTANI, B. T. and W. D. GONZALEZ, 1987. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci., 35, 405. DOI: https://doi.org/10.1016/0032-0633(87)90097-3
TSURUTANI, B. T., W. D. GONZALEZ, F. TANG, S. I. AKASOFU and E. J. SMITH, 1988. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979). J. Geophys. Res., 93, 8519. DOI: https://doi.org/10.1029/JA093iA08p08519
TSURUTANI, B. T., T. GOULD, B. GOLDSTEIN, W. D. GONZALEZ and M. SUGIURA, 1990. Interplanetary Alfvén waves and auroral (substorm) activity “IMP-8”. J. Geophys. Res., 95, 2241. DOI: https://doi.org/10.1029/JA095iA03p02241
TSURUTANI, B. T., W. D. GONZALEZ, F. TANG and Y. TE LEE, 1991. Superstorms. Geophys. Res. Lett. (in press).
VASYLIUNAS, V. H., J. R. KAN, G. L. SISCOE and S. I. AKASOFU, 1982. Scaling relations governing magnetosphere energy transfer. Planet. Space Sci., 30, 359. DOI: https://doi.org/10.1016/0032-0633(82)90041-1
WYGANT, J. R., R. B. TORBERT and F. S. MOZER, 1983. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection. J. Geophys. Res., 85, 5727. DOI: https://doi.org/10.1029/JA088iA07p05727
ZWAN, B. J. and R. A. WOLF, 1976. Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res., 81, 1636. DOI: https://doi.org/10.1029/JA081i010p01636