Subsurface characterization for foundation valuation of existing engineering structures in basement complex of southwestern Nigeria
Contenido principal del artículo
Resumen
La caracterización del subsuelo para evaluar los cimientos de estructuras de ingeniería existentes tiene como objetivo investigar la competencia estructural de varias torres de gran altura seleccionadas en el campus de la Universidad de Ilorin, ubicada en el Complejo Subterráneo del centro-norte de Nigeria. Para este estudio, se emplearon técnicas de electromagnetismo de muy baja frecuencia (VLF-EM) y sondeos eléctricos verticales (SEV) para analizar la secuencia geológica del subsuelo. Se realizaron veintiún perfiles VLF-EM en dirección este-oeste, alineados con la tendencia geológica predominante NESW. Las 32 zonas anómalas identificadas en los datos EM filtrados fueron investigadas a fondo utilizando la técnica SEV de Schlumberger. Los resultados EM muestran respuestas que varían entre -40 % y 45 %, con una serie de picos positivos y negativos alternados. Esto sugiere la presencia de formaciones contrastantes cerca de la superficie, identificadas como zonas vadosas, compuestas por arcilla laterítica y/o arena arcillosa, y capas meteorizadas portadoras de agua que se extienden hasta una profundidad estimada de 8 metros. La secuencia geoeléctrica vertical reveló la existencia de entre 3 y 5 horizontes eléctricos, destacando una capa superior formada por lentes de arcilla, arcilla arenosa, suelo laterítico compacto o arena arcillosa, sobre un basamento altamente meteorizado y roca madre fracturada hasta fresca. El basamento, en su mayoría meteorizado, se encuentra a poca profundidad, variando entre 1.0 y 10.6 metros. La sobrecarga es delgada y está compuesta principalmente por lentes de arcilla y suelo laterítico compacto, considerados como un subsuelo competente para estructuras de gran altura. Sin embargo, las gruesas capas de arcilla en las zonas sur y norte podrían ser problemáticas para estas estructuras si se extienden en otros perfiles. La presencia de roca madre fracturad a es también relevante para el desarrollo de aguas subterráneas y, si es sísmicamente activa, podría representar un riesgo para los edificios. En general, el área de estudio presenta una secuencia subsuperficial y una roca madre estructuralmente competente, capaz de soportar las estructuras de gran altura seleccionadas. Esto se corrobora en algunos de los perfiles y puntos VES, incluyendo los recorridos 1 (VES1, VES2 y VES3), 2, 5 (VES7, VES8 y VES9), y 20 (VES30, VES31 y VES32).
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Abem A. B. (1990). ABEM instructional manual: ABEM AB, Bromma, Sweden.
Ademila O., Olayinka A. I., and Oladunjoye M. A. (2020). Land satellite imagery and integrated geophysical investigations of highway pavement instability in Southwestern Nigeria. Geology, Geophysics and Environment, 46(2),135–157. doi: https://doi.org/10.7494/geol.2020.46.2.135
Ademila O. (2021). Combined geophysical and geotechnical investigation of pavement failure for sustainable construction of Owo-Ikare Highway, Southwestern Nigeria. National Research Institute of Astronomy and Geophysics (NRIAG) Journal of Astronomy and Geophysics, 10(1), 183-201.doi: https://doi.org/10.1080/20909977.2021.1900527
Ademilua O. L., Eluwole A. B., Bawallah M., and Ademilua B. O. (2015). Geophysical investigations for subsurface integrity assessment and its implications on existing and proposed buildings around the south western part of the Ekiti state university campus, Ado-Ekiti, southwest Nigeria. International Journal of Advancement in Engineering Technology, Management & Applied Sciences, 2(2), 1-13.
Ajayi, C. A., Ilugbo, S. O., Bayode, S., Aderemi, S. A., Adebo, B. A., Talabi, A. O., Ojo, O. F., and Talabi, J. I. (2022). Assessment of Probable Foundation Problems Using Geophysical and Remotely Sensed Data in a Typical Basement Complex, Southwestern Nigeria. Earth Sciences Pakistan ESP., 6(2), 72-82. doi: http://doi.org/10.26480/esp.02.2022.72.82
Akinbiyi, A. O., Sanuade, A. O., Akanji, A., Isah, A., Ugwoke, L. J., and Olaseeni, G. O. (2020). An integrated geophysical approach for post foundation studies at Edunabon town, southwestern Nigeria. Modeling Earth Systems and Environment, 7, 1281-1289. doi: https://doi.org/10.1007/s40808-020-01001-7
Akingboye, S., and Osazuwa, I. B. (2021). Subsurface geological, hydrogeophysical and engineering characterization of Etioro-Akoko, southwestern Nigeria, using electrical resistivity tomography. NRIAG Journal of Astronomy and Geophysics, 10(1). doi: https://doi.org/10.1080/20909977.2020.1868659
Alagbe, O. A., Sunmonu, L. A., and Adabanija, M. A. (2013). Fracture distribution within Bowen University Permanent site and its hydro geologic implication. Research Journal of Physical Sciences, 1(3), 1-5.
Alao, J. O., Lawal, K. M., and Dewu, B. B. M. (2023). The evolving roles of geophysical test sites in engineering, science and technology. Acta Geophysics, 72, 161-176 doi: https://doi.org/10.1007/s11600-023-01096-3
Boyede, S., Akinlalu, A., Falade, K., and Oyanameh, O. (2020). Integration of geophysically derived parameters in characterization of foundation integrity zones: An AHP approach. Heliyon, 6(5), e03981. doi: https://doi.org/10.1016/j.heliyon.2020.e03981
Idornigie, A. I., and Olorunfemi, M. O. (2006). Electrical resistivity determination of subsurface layers, subsoil competence and soil corrosivity at an engineering site location in Akungba-Akoko, south western Nigeria. Ife Journal of Science, 8(2), 22-32. doi: https://doi.org/10.4314/ijs.v8i2.32216
Jinguuji, M., and Yokota, T. (2022). Investigating soil conditions around buried water pipelines using very-low-frequency band alternating current electrical resistivity survey. Near Surface Geophysics, 20(2), 192–207. doi: https://doi.org/10.1002/nsg.12191
Magawata. U. Z., Mohammed, I., Ojulari, B. A., Augie, A. I., and Salisu M. (2020). Geo-electric assessment of Kali failed dam project Aliero, North Western Nigeria. International journal of Geosciences, 11(1), 1-13. doi: https://doi.org/10.4236/ijg.2020.111001
McDowell, P. (1981). Recent developments in geophysical techniques for the rapid location of near-surface anomalous ground conditions. Ground Engineering, 14, 20-23.
Mathiez S. P., and Huota P. (1966). Geophysical prospecting and ground water exploration. Inter Committee for hydrological studies, 13-33.
Mohammed, H., Yanjun, S., Weijun, J., and Gulraiz, A. (2020). An engineering site investigation using non-invasive geophysical approach. Environmental Earth Sciences, 79, 265. doi: https://doi.org/10.1007/s12665-020-09013-3
Mousa, D. A. (2003). The role of 1-D sounding and 2-D resistivity inversions in delineating the Near surface litho logic variations in Tushka area, south of Egypt. Geophysical Society Journal, 1, 57-64.
Nwankwoala, H. O., and Warmate, T. (2014). Geotechnical Evaluation of Subsoil for Foundation Design Considerations in Okochiri, Okrika Island, Rivers State, Nigeria. International Journal of Current Research and Academic Review, 2(4), 16-25.
Obaje, N. G. (2009). Geology and Mineral Resources of Nigeria. Lecture Notes in Earth Sciences. Berlin Heidelberg, Springer.
Olasunkanmi N. K., Lawal S. K., Awojobi M. O., Aina A., Suleman K. O., and Owolabi D. T. (2018). Integrated Geophysical Approach to Building Studies within Kwara State University, South Western, Nigeria. Nigeria Journal of Physics, 27(S), 181-191.
Olatunji S., and Fauzan A. O. (2022). Geophysical assessment of groundwater contaminations from leachate intrusion in Amoyo dumpsite. Journal of Fundamental and Applied Sciences. 14(1). doi: http://dx.doi.org/10.4314/jfas.v14i1.10
Oyedele, A. A., Bawallah, M. A., Akinwamide, J. T., Ilugbo, S. O., and Ogunyebi, S. N. (2022). Integration of VLF-EM and VES data for pavement failure investigation in a typical basement complex terrain of southwestern Nigeria. Sciendo, 69(2) doi: https://doi.org/10.2478/rmzmag-2021-0021
Oyedele, K. F., Oladele, S., and Adedoyin, O. (2009). Application of geophysical and geotechnical methods to site characterization for construction purposes at Ikoyi, Lagos, Nigeria. Journal of Earth sciences and geotechnical engineering, 1(1), 87-100. https://ir.unilag.edu.ng/handle/123456789/5080
Popoola O. I., and Odeyemi S. O. (2015). Integrated Geophysical Survey for Pre-Foundation Study at A Proposed School Site in Ibadan, South western Nigeria. New York Science Journal; 8(8).
Raji, W., and Bale, R. (2008). The Geology and Geophysical Studies of a Gravel Deposit in University of Ilorin, Southwestern Nigeria. Journal of Earth Science, 3, 40-46.
Sharma, S. P. and Baranwal, V. C. (2005) Delineation of Groundwater-Bearing Fracture Zone in a Hardrock Area Integrating Very Low Frequency Electromagnetic and Resistivity Data. Journal of Applied Geophysics, 57, 155-166. doi: https://doi.org/10.1016/j.jappgeo.2004.10.003
Sumonu L. A., Alagbe, O. A., Mabunmi, S. A., Adeniji, A. A., and Olasunkanmi, N. K. (2013). Geophysical Investigation into the Cause (S) of Structural Failure within Bacosa Faculty of Science Buildings, Bowen University Temporary Site, Iwo. Advances in Physics Theories and Applications, 23.
Usman, Z. M. (2019). Geo-Electric Survey for Ground Water Exploration at Birnin Kebbi, Kebbi State, Nigeria. FUDMA Journal of Sciences, 3(1), 168-178.
Zohdy, A. A. R. (1973). A computer program for automatic interpretation of Schlumberger sounding curves over horizontally stratified media. PB-232703, National Technical Information Service, spring field, Virginia.
Zohdy, A. A. R. (1975). Automatic interpretation of Schlumberger sounding curves using modified Dar Zarrouk functions. Geological Survey. Bulletin, 1313E, 39.
Zohdy, A. A. R. (1989). A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54(2), 245-253. doi: https://doi.org/10.1190/1.1442648