Petrographic and geochemical evidence for determining the provenance of the Nari Formation, Pakistan

Contenido principal del artículo

Muhammad Paryal
Aftab Ali Panhwar
Zhong Jianhua
M.H. Agheem
Gulfam Hussain
Chander Pirkash
Rizwan Ali Shar
Irfan Ali Siyal

Resumen

Las características geoquímicas y petrográficas de la Formación Nari (FN) han sido examinadas en detalle en la sección de Haji Haroon, situada en la Cuenca del Bajo Indo (LIB), en la Cordillera Laki del Norte, aproximadamente a 20 kilómetros al sur de la aldea de Therhi, en Sehwan Sharif. La FN está compuesta predominantemente por arenisca, arcillas multicolores, lutita y caliza en la sección de Haji Haroon. El análisis geoquímico de los elementos mayores mediante Microscopía Electrónica de Barrido con Espectrometría de Energía Dispersiva automatizada (SEM-EDS automatizado) revela que el cuarzo es el mineral dominante en todas las areniscas estudiadas, alcanzando entre un 75% y un 90% en su composición. El segundo mineral en abundancia es la calcita, cuya proporción varía entre muestras. En la parte basal de la FN, la muestra etiquetada como HHS-02 consiste en caliza calcítica, con un contenido de calcita superior al 85% en peso (%). Los estudios previos en la Cuenca del Bajo Indo sugieren que las partes basal y superior de la Formación Nari se formaron en ambientes fluviales. Sin embargo, nuestro estudio contradice estos paradigmas previos y proporciona nuevas perspectivas sobre el ambiente deposicional de la FN. Los análisis petrográficos, SEM-EDS y las observaciones de campo indican que la FN en la sección de Haji Haroon, en la Cordillera Laki del Norte, no es exclusivamente de origen fluvial. En cambio, la parte basal de la formación tiene un origen marino, mientras que la parte superior es de origen fluvial. La parte basal se caracteriza por ambientes transicionales, que podrían corresponder a depósitos deltaicos o de playa, debido a la presencia significativa tanto de cuarzo como de calcita. Las muestras presentan un alto contenido de cuarzo, lo que permite clasificarlas como arenitas cuarzosas. A partir de la morfología de los granos clásticos de cuarzo, se ha determinado que los sedimentos probablemente se originaron en las tierras altas del oeste en lugar del Himalaya septentrional o del escudo índico, con base en la identificación de fragmentos de roca preexistentes.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
243
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Detalles del artículo

Cómo citar
Paryal, M., Panhwar, A. A., Jianhua, Z., Agheem, M., Hussain, G., Pirkash, C., … Siyal, I. A. (2025). Petrographic and geochemical evidence for determining the provenance of the Nari Formation, Pakistan. Geofísica Internacional, 64(2), 1563–1575. https://doi.org/10.22201/igeof.2954436xe.2025.64.2.1816
Sección
Artículo

Citas

Ali, L., Barrufet, M. A. (1995). Study of pore structure modification using environmental scanning electron ‎microscopy. Journal of Petroleum Science and Engineering 12(4), 323-338‎. doi: https://doi.org/10.1016/0920-4105(94)00050-E

Ameen, B. M. (2009). Lthological indicators for the oligocene unconformity, ne Iraq. Iraqi Bulletin of Geology and Mining 5(1), 25-34.

Armstrong-Altrin, J., Lee, Y. I., Verma, S. P., Ramasamy, S. (2004). Geochemistry of sandstones from the Upper ‎Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and ‎tectonic setting. Journal of sedimentary Research 74, 285-297.‎ doi: https://doi.org/10.1306/082803740285

Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J.-‎A., Ruíz-Fernández, A.C. (2015). Provenance and depositional history of continental slope sediments ‎in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research ‎‎95, 15-26.‎ doi: https://doi.org/10.1016/j.csr.2015.01.003

Bhatia, M. R., Crook, K. A. (1986). Trace element characteristics of graywackes and tectonic setting ‎discrimination of sedimentary basins. Contributions to mineralogy and petrology. 92, 181-193.‎ doi: https://doi.org/10.1007/BF00375292

Brohi, I., Sahito, A., Brohi, A., Samoon, M., Memon, K. (2014). Stratigraphic Prospects and Structural ‎Analysis of the Rois Anticline Thanu Bula Khan, Jamshoro, Sindh. Sindh University Research ‎Journal-SURJ (Science Series) 46(2), 261-266.‎ https://sujo.usindh.edu.pk/index.php/SURJ/article/view/5367

Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., ‎Lindberg, F. A., Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation ‎to tectonic setting. Geological Society of America Bulletin, 94(2), 222-235.‎ doi: https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2

Donahue, Jack., David, R., Watters., Sarah, Millspaugh. (1990). Thin section petrography of northern Lesser ‎Antilles ceramics. Geoarchaeology An International Journal, 5(3):229-254. ‎doi: https://doi.org/10.1002/gea.3340050303

Dott, R. H. (1964). Wacke, graywacke and matrix; what approach to immature sandstone classification? Journal ‎of Sedimentary Research 34(3), 625-632.‎ doi: https://doi.org/10.1306/74D71109-2B21-11D7-8648000102C1865D

Gardezi, S. A. H., Hussain, G., Neupane, B., Imran, M., Hamid, Q. Y., Ikram, N., Asghar, H. (2021). Geological ‎investigation of 5.6 MW Mirpur earthquake, northwestern Himalayas, Pakistan. International Research Journal of Earth Sciences, 91(1), 20-‎‎31.‎ https://zenodo.org/records/5704515

Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth-science reviews, 192, 545-563.‎ doi: https://doi.org/10.1016/j.earscirev.2018.12.014

Ghosh, S., Sarkar, S., Ghosh, P. (2012). Petrography and major element geochemistry of the Permo-Triassic ‎sandstones, central India: implications for provenance in an intracratonic pull-apart basin. Journal of ‎Asian Earth Sciences, 43(1), 207-240.‎ doi: https://doi.org/10.1016/j.jseaes.2011.09.011

Ibrahim, S. S. (1977). Stratigraphy of Pakistan. Geological Survey of Pakistan Memoir, 12, 1-138‎.

Kazmi, A. H., Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic Publisher.‎

Khan, Z., Quasim, M., Amir, M., Ahmad, A. (2020). Provenance, tectonic setting, and source area weathering of ‎Middle Jurassic siliciclastic rocks of Chari Formation, Jumara Dome, Kachchh Basin, Western India: ‎Sedimentological, mineralogical, and geochemical constraints. Geological Journal, 55(5), 3537-3558.‎ doi: https://doi.org/10.1002/gj.3612

Khokhar, Q., Hakro, A., Solangi, S., Siddiqui, I., Abbasi, S. (2016). Textural evaluation of Nari Formation, Laki ‎range, southern Indus Basin, Pakistan. Sindh University Research Journal-SURJ (Science Series), 48(3), 633-638. https://sociology.usindh.edu.pk/index.php/SURJ/article/view/5005

M. H. Agheem, A. H. Markhand, H. Dars, S. H. Solangi, A. Sahito, & G. Thebo. (2020). ‎Mineralogical Studies of Manchar Formation (Pliocene), Laki Range, Pakistan: source and Possible ‎Occurrence of Bauxite. Sindh University Research Journal-SURJ (Science Series), 52(1), 21-30. ‎ doi: http:/ /doi.org/10.26692/sujo/2020.03.04

Mahmud, S. A., Sheikh, S. A. (2009). Reservoir potential of lower nari sandstones (Early Oligocene) in southern ‎Indus basin and Indus offshore. [Conference session‎]. 2009 Annual Technical Conference (ATC). Islamabad, Pakistan. https://www.searchanddiscovery.com/documents/2012/50582mahmud/ndx_mahmud.pdf

Maria, Haugen. (2017). A detailed study of variations in mineralogy and depositional environments in ‎clinothems in the Eocene Sobrarbe deltaic complex in the Ainsa Basin, Spain.‎ [Master's Thesis]. University of Oslo. http://urn.nb.no/URN:NBN:no-60601

McLennan, S., Hemming, S., McDaniel, D., Hanson, G. (1993). Geochemical approaches to sedimentation, ‎provenance, and tectonics. En A. Mark J. Johnsson; Abhijit Basu (Eds.), Processes Controlling the Composition of Clastic Sediments, (pp. 21-21). Geological Society of America. doi: https://doi.org/10.1130/SPE284-p21

Naseem, S., Sheikh, S. A., Qadeeruddin, M. (1996). Geochemistry and sedimentology of Jhill limestone of Gaj ‎formation, in Cape Monze and adjoining area, Karachi. Chinese Journal of Geochemistry 15, 213-‎‎227.‎ doi: https://doi.org/10.1007/BF02842246

Nesbitt, H. W., Young, G. M. (1996). Petrogenesis of sediments in the absence of chemical weathering: effects ‎of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43(2), 341-358‎. doi: https://doi.org/10.1046/j.1365-3091.1996.d01-12.x

Paryal, M., Agheem, M. H., Hussain, G., Kalwar, M. A., Hussain, M., and Asghar, H. (2020). Petrography Of Upper Nari Formation, Gandri Jabal, Pakistan. North American Academic ‎Research, 3(5), 178-199. doi: https://doi.org/10.5281/zenodo.3817540

Pietro, Curzi., Enrico, Dinelli., Marianna, Ricci, Lucchi., Stefano, Claudio, Vaiani. (2006). ‎Palaeoenvironmental control on sediment composition and provenance in the late Quaternary deltaic ‎successions: a case study from the Po delta area (Northern Italy). Geological Journal, 41(5):591-612. ‎doi: https://doi.org/10.1002/GJ.1060

Pilbeam, D., Barry, J., Meyer, G. E., Shah, S. I., Pickford, M. H., Bishop, W. W., Thomas, H., Jacobs, L. L. (1977). ‎Geology and palaeontology of Neogene strata of Pakistan. Nature, 270, 684-689.‎ doi: https://doi.org/10.1038/270684a0

Quasim, M., Khan, I., Ahmad, A. (2017). Integrated petrographic, mineralogical, and geochemical study of the ‎Upper Kaimur Group of rocks, Son Valley, India: Implications for provenance, source area ‎weathering and tectonic setting. Journal of the Geological Society of India, 90, 467-484.‎ doi: https://doi.org/10.1007/s12594-017-0740-6

Rajabzadeh, A., Kouhestani, H., Mokhtari, M. A. A., Zohdi, A. (2019). Stratigraphy, sedimentary facies and ‎tectonic setting of sandstones of the middle part of the Upper Red Formation at Chehrabad deposit ‎section, northwest of Zanjan. Scientific Semiannual Journal Sedimentary Facies, 12(1), 75-90.‎ doi: https://doi.org/10.22067/sed.facies.v12i1.67349

S. Shah. (1977). Stratigraphy of Pakistan. Geological Survey of Pakistan.

Sadaf, Ismail., Syed, Iqbal, Mohsin., Syed, Kashif, Ali, Shah., Salman, Ismail. (2018). Clay Mineralogy and ‎Petrography of Basal Sand Reservoir of Badin Block, Southern Indus Basin, Pakistan: Implications ‎for Diagenesis and Reservoir Damage Potential Assessment. International Journal of Economic and Environmental Geology, 9(4), 49-57.

Shar, A. M., Mahesar, A. A., Narejo, A. A., Fatima, N. (2021). Petrography and geochemical characteristics of ‎Nari sandstone in lower Indus Basin, Sindh, Pakistan. Mehran University Research Journal Of ‎Engineering & Technology, 40(1), 82-92.‎ doi: https://doi.org/10.22581/muet1982.2101.08

Wahyu, Budhi, Khorniawan., Anita, Galih, Ringga, Jayanti., D, Caesario. (2024). Quantitative Analysis of ‎Thin Section using Frequency Measurement (Point Counting), a Case Study on Limestone of The ‎Rajamandala Formation, Cikamuning, West Java. Indonesia. Journal of Geoscience, Engineering, Environment and Technology, 9(3), 245- 252. doi: ‎ https://doi.org/10.25299/jgeet.2024.9.3.16489

Zahoor, Ahmed., Abdul, Salam, Khan., Bilal, Ahmed. (2020). Sandstone Composition and Provenance of the ‎Nari Formation, Central Kirthar Fold belt, Pakistan. Pakistan Journal of Geology, 4(2), 90-96. doi: https://doi.org/10.2478/pjg-2020-0010