Permeability estimation using Poiseuille models: a case study on comparative analysis of characteristic radii in tight rocks.

Contenido principal del artículo

Moises Franco-Villegas
Enrique Coconi-Morales
Carlos J. T. Nieto-Rivero
Oscar. C. Valdiviezo-Mijangos
Gorgonio Fuentes-Cruz

Resumen

La permeabilidad, una propiedad petrofísica fundamental controla el flujo de fluidos en medios porosos, enfrenta desafíos de medición en rocas compactas debido a procedimientos intensivos en el tiempo, requisitos de equipos especializados y altos costos asociados. Este estudio presenta una nueva metodología basada en modelos Poiseuille que identifica sistemáticamente los radios característicos de los datos de presión capilla de inyección de mercurio (MICP) a la par que revela los mecanismos físicos subyacentes. Se evaluaron sistemáticamente diecisiete radios característicos de garganta de poro a partir de conjuntos de datos compilados de areniscas, carbonatos y lutitas de baja permeabilidad. El desempeño del modelo, evaluado mediante el coeficiente de determinación (R2), arrojó 0.96 para areniscas con Rc (radio crítico en el umbral de percolación), 0.86 para carbonatos con r60-r70 (radios al 60-70% de saturación de mercurio), y 0.77 para lutitas con r5-r10 (radios al 5-10% de saturación). Estos radios proporcionan mecanismos físicos más allá del ajuste empírico: Rc captura la percolación temprana en redes intergranulares preservadas, r60 a r70 representa la saturación acumulativa necesaria para que gargantas más pequeñas conecten vúgulos y poros móldicos aislados en sistemas carbonatados heterogéneos, y r5 a r10 identifica los poros más grandes que controlan la conectividad a nanoescala a pesar de ser los menos abundantes. Para yacimientos de baja permeabilidad y proyectos de almacenamiento de CO2 donde las mediciones directas son imprácticas, este enfoque permite la caracterización rápida fragmentos colapsados de núcleos o recortes de perforación cuando la recuperación de núcleos es limitada, reduciendo los costos de evaluación mediante modelos específicos por litología. 

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 3%
33% aceptado
Days to publication 
192
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Detalles del artículo

Cómo citar
Franco-Villegas, M., Coconi-Morales, E., Nieto-Rivero, C. J. T., Valdiviezo-Mijangos, O. C., & Fuentes-Cruz, G. (2025). Permeability estimation using Poiseuille models: a case study on comparative analysis of characteristic radii in tight rocks. Geofísica Internacional, 64(4), 1731–1750. https://doi.org/10.22201/igeof.2954436xe.2025.64.4.1877
Sección
Artículo

Citas

Al‐Aasm, I. S., Ghazban, F., & Ranjbaran, M. (2009). Dolomitization and related fluid evolution in the oligocene–miocene asmari formation, gachsaran area, sw Iran: petrographic and isotopic evidence. Journal of Petroleum Geology, 32(3), 287-304. doi: https://doi.org/10.1111/j.1747-5457.2009.00449.x DOI: https://doi.org/10.1111/j.1747-5457.2009.00449.x

Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19, 620-641. doi: https://doi.org/10.1016/j.ijggc.2013.01.040 DOI: https://doi.org/10.1016/j.ijggc.2013.01.040

Aqrawi, A. A. M., Keramati, M., Ehrenberg, S. N., Pickard, N., Moallemi, A., Svånå, T., Darke, G., Dickson, J. A. D., & Oxtoby, N. H. (2006). The origin of dolomite in the asmari formation (oligocene‐lower miocene), dezful embayment, sw Iran. Journal of Petroleum Geology, 29(4), 381-402. doi: https://doi.org/10.1111/j.1747-5457.2006.00381.x DOI: https://doi.org/10.1111/j.1747-5457.2006.00381.x

Bear, J. (2018). Modeling Phenomena of Flow and Transport in Porous Media (Vol. 31). Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-72826-1 DOI: https://doi.org/10.1007/978-3-319-72826-1

Bernabé, Y., Li, M., & Maineult, A. (2010). Permeability and pore connectivity: A new model based on network simulations. Journal of Geophysical Research: Solid Earth, 115(B10), 2010JB007444. doi: https://doi.org/10.1029/2010JB007444 DOI: https://doi.org/10.1029/2010JB007444

Boak, J., & Kleinberg, R. (2020). Shale Gas, Tight Oil, Shale Oil and Hydraulic Fracturing. In Trevor M. Letcher (Ed.) Future Energy (pp. 67-95). Elsevier. doi: https://doi.org/10.1016/B978-0-08-102886-5.00004-9 DOI: https://doi.org/10.1016/B978-0-08-102886-5.00004-9

Comisky, J. T., Newsham, K. E., Rushing, J. A., & Blasingame, T. A. (2007). A Comparative Study of Capillary-Pressure-Based Empirical Models for Estimating Absolute Permeability in Tight Gas Sands. SPE Annual Technical Conference and Exhibition, SPE-110050-MS. doi: https://doi.org/10.2118/110050-MS DOI: https://doi.org/10.2523/110050-MS

Dastidar, R., Sondergeld, C. H., & Rai, C. S. (2007). An Improved Empirical Permeability Estimator From Mercury Injection For Tight Clastic Rocks. Petrophysics - The SPWLA Journal, 48(03).

Er, C., Li, Y., Zhao, J., Wang, R., Bai, Z., & Han, Q. (2016). Pore formation and occurrence in the organic-rich shales of the Triassic Chang-7 Member, Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Geoscience, 1(6), 435-444. doi: https://doi.org/10.1016/j.jnggs.2016.11.013 DOI: https://doi.org/10.1016/j.jnggs.2016.11.013

Feng, Z., & Graham, S. A. (2024). The Songliao basin, China. In Domenico Chiarella, Nicola Scarselli and Jürgen Adam (Eds.) Regional Geology and Tectonics (pp. 121-145). Elsevier. doi: https://doi.org/10.1016/B978-0-444-64136-6.00003-8 DOI: https://doi.org/10.1016/B978-0-444-64136-6.00003-8

Fleury, M., & Brosse, E. (2018). Transport in Tight Rocks. En S. Vialle, J. Ajo‐Franklin, & J. W. Carey (Eds.), Geophysical Monograph Series (1a ed., pp. 31-43). Wiley. doi: https://doi.org/10.1002/9781119118657.ch2 DOI: https://doi.org/10.1002/9781119118657.ch2

Gao, Z., & Hu, Q. (2013). Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry. Journal of Geophysics and Engineering, 10(2), 025014. doi: https://doi.org/10.1088/1742-2132/10/2/025014 DOI: https://doi.org/10.1088/1742-2132/10/2/025014

Giesche, H. (2006). Mercury Porosimetry: A General (Practical) Overview. Particle & Particle Systems Characterization, 23(1), 9-19. doi: https://doi.org/10.1002/ppsc.200601009 DOI: https://doi.org/10.1002/ppsc.200601009

Hildenbrand, A., Schlömer, S., & Krooss, B. M. (2002). Gas breakthrough experiments on fine‐grained sedimentary rocks. Geofluids, 2(1), 3-23. doi: https://doi.org/10.1046/j.1468-8123.2002.00031.x DOI: https://doi.org/10.1046/j.1468-8123.2002.00031.x

Hu, F., Meng, Q., & Liu, Z. (2021). Mineralogy and Element Geochemistry of Oil Shales in the Lower Cretaceous Qingshankou Formation of the Southern Songliao Basin, Northeast China: Implications of Provenance, Tectonic Setting, and Paleoenvironment. ACS Earth and Space Chemistry, 5(2), 365-380. doi: https://doi.org/10.1021/acsearthspacechem.0c00336 DOI: https://doi.org/10.1021/acsearthspacechem.0c00336

Huet, C. C., Rushing, J. A., Newsham, K. E., & Blasingame, T. A. (noviembre, 2005). A Modified Purcell/Burdine Model for Estimating Absolute Permeability from Mercury-Injection Capillary Pressure Data. All Days. [Presentación de paper]. International Petroleum Technology Conference, Doha, Qatar. doi: https://doi.org/10.2523/iptc-10994-ms DOI: https://doi.org/10.2523/IPTC-10994-MS

Hunt, A. G. (2001). Applications of percolation theory to porous media with distributed local conductances. Advances in Water Resources, 24(3-4), 279-307. doi: https://doi.org/10.1016/S0309-1708(00)00058-0 DOI: https://doi.org/10.1016/S0309-1708(00)00058-0

Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34(11), 8179-8181. doi: https://doi.org/10.1103/PhysRevB.34.8179 DOI: https://doi.org/10.1103/PhysRevB.34.8179

Katz, A. J., & Thompson, A. H. (1987). Prediction of rock electrical conductivity from mercury injection measurements. Journal of Geophysical Research: Solid Earth, 92(B1), 599-607. doi: https://doi.org/10.1029/JB092iB01p00599 DOI: https://doi.org/10.1029/JB092iB01p00599

Kolodzie, S. (1980). Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine OOIP in Spindle Field, Colorado. [Presentación de paper] SPE Annual Technical Conference and Exhibition, SPE-9382-MS. doi: https://doi.org/10.2118/9382-MS DOI: https://doi.org/10.2118/9382-MS

León Y León, C. A. (1998). New perspectives in mercury porosimetry. Advances in Colloid and Interface Science, 76-77, 341-372. doi: https://doi.org/10.1016/s0001-8686(98)00052-9 DOI: https://doi.org/10.1016/S0001-8686(98)00052-9

Liu, K., Mirzaei-Paiaman, A., Liu, B., & Ostadhassan, M. (2020). A new model to estimate permeability using mercury injection capillary pressure data: Application to carbonate and shale samples. Journal of Natural Gas Science and Engineering, 84, 103691. doi: https://doi.org/10.1016/j.jngse.2020.103691 DOI: https://doi.org/10.1016/j.jngse.2020.103691

Liu, K., & Ostadhassan, M. (2019). The impact of pore size distribution data presentation format on pore structure interpretation of shales. Advances in Geo-Energy Research, 3(2), 187-197. doi: https://doi.org/10.26804/ager.2019.02.08 DOI: https://doi.org/10.26804/ager.2019.02.08

Mohaghegh, S., Arefi, R., Bilgesu, I., Ameri, S., & Rose, D. (1995). Design and Development of An Artificial Neural Network for Estimation of Formation Permeability. SPE Computer Applications, 7(06), 151-154. doi: https://doi.org/10.2118/28237-PA DOI: https://doi.org/10.2118/28237-PA

Ngo, V. T., Lu, V. D., & Le, V. M. (2018). A comparison of permeability prediction methods using core analysis data for sandstone and carbonate reservoirs. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 4(2), 129-139. doi: https://doi.org/10.1007/s40948-017-0078-y DOI: https://doi.org/10.1007/s40948-017-0078-y

Ngo, V. T., Lu, V. D., Nguyen, M. H., Hoang, T. M., Nguyen, H. M., & Le, V. M. (2015). A Comparison of Permeability Prediction Methods Using Core Analysis Data. [Presentación de paper]. SPE Reservoir Characterisation and Simulation Conference and Exhibition, D011S001R003. doi: https://doi.org/10.2118/175650-MS DOI: https://doi.org/10.2118/175650-MS

Nooruddin, H. A., Anifowose, F., & Abdulraheem, A. (2013). Applying Artificial Intelligence Techniques to Develop Permeability Predictive Models using Mercury Injection Capillary-Pressure Data. [Presentación de paper]. SPE Saudi Arabia Section Technical Symposium and Exhibition, SPE-168109-MS. doi: https://doi.org/10.2118/168109-MS DOI: https://doi.org/10.2118/168109-MS

Ozotta, O., Ostadhassan, M., Liu, K., Liu, B., Kolawole, O., & Hadavimoghaddam, F. (2021). Reassessment of CO2 sequestration in tight reservoirs and associated formations. Journal of Petroleum Science and Engineering, 206, 109071. doi: https://doi.org/10.1016/j.petrol.2021.109071 DOI: https://doi.org/10.1016/j.petrol.2021.109071

Pickup, G. E., Ringrose, P. S., Jensen, J. L., & Sorbie, K. S. (1994). Permeability tensors for sedimentary structures. Mathematical Geology, 26(2), 227-250. doi: https://doi.org/10.1007/BF02082765 DOI: https://doi.org/10.1007/BF02082765

Pittman, E. D. (1992). Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bulletin (American Association of Petroleum Geologists); (United States), 76(2). https://www.osti.gov/biblio/5597475 DOI: https://doi.org/10.1306/BDFF87A4-1718-11D7-8645000102C1865D

Qin, Y., Yao, S., Xiao, H., Cao, J., Hu, W., Sun, L., Tao, K., & Liu, X. (2021). Pore structure and connectivity of tight sandstone reservoirs in petroleum basins: A review and application of new methodologies to the Late Triassic Ordos Basin, China. Marine and Petroleum Geology, 129, 105084. doi: https://doi.org/10.1016/j.marpetgeo.2021.105084 DOI: https://doi.org/10.1016/j.marpetgeo.2021.105084

Rashid, F., Glover, P. W. J., Lorinczi, P., Hussein, D., Collier, R., & Lawrence, J. (2015). Permeability prediction in tight carbonate rocks using capillary pressure measurements. Marine and Petroleum Geology, 68(A), 536-550. doi: https://doi.org/10.1016/j.marpetgeo.2015.10.005 DOI: https://doi.org/10.1016/j.marpetgeo.2015.10.005

Rezaee, M. R., Jafari, A., & Kazemzadeh, E. (2006). Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. Journal of Geophysics and Engineering, 3(4), 370-376. doi: https://doi.org/10.1088/1742-2132/3/4/008 DOI: https://doi.org/10.1088/1742-2132/3/4/008

Rezaee, R., Saeedi, A., & Clennell, B. (2012). Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering, 88-89, 92-99. doi: https://doi.org/10.1016/j.petrol.2011.12.014 DOI: https://doi.org/10.1016/j.petrol.2011.12.014

Sadeqi, H., Aleali, M., Kadkhodaie, A., & Arian, M. (2025). Facies distribution, sequence stratigraphy, and reservoir quality of the Oligo-Miocene carbonate sequences (Asmari formation) in the Dezful embayment, SW Iran. Journal of Petroleum Exploration and Production Technology, 15(1), 2. doi: https://doi.org/10.1007/s13202-024-01892-7 DOI: https://doi.org/10.1007/s13202-024-01892-7

Sahimi, M. (2021). Percolation Phase Transition. En M. Sahimi & A. G. Hunt (Eds.), Complex Media and Percolation Theory (pp. 1-9). Springer US. doi: https://doi.org/10.1007/978-1-0716-1457-0_387 DOI: https://doi.org/10.1007/978-1-0716-1457-0_387

Salazar, M. O., & Villa, J. R. (2007). Permeability Upscaling Techniques for Reservoir Simulation. [Presentación de paper]. Latin American & Caribbean Petroleum Engineering Conference, SPE-106679-MS. doi: https://doi.org/10.2118/106679-MS DOI: https://doi.org/10.2118/106679-MS

Seyrafian, A., Vaziri-Moghaddam, H., Arzani, N., & Taheri, A. (2011). Facies analysis of the Asmari Formation in central and north-central Zagros basin, southwest Iran: Biostratigraphy, paleoecology and diagenesis. Revista Mexicana de Ciencias Geológicas, 28(3), 439-458. https://rmcg.geociencias.unam.mx/index.php/rmcg/article/view/184

Sun, M., Zhang, L., Hu, Q., Pan, Z., Yu, B., Sun, L., Bai, L., Fu, H., Zhang, Y., Zhang, C., & Cheng, G. (2020). Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Marine and Petroleum Geology, 112, 104101. doi: https://doi.org/10.1016/j.marpetgeo.2019.104101 DOI: https://doi.org/10.1016/j.marpetgeo.2019.104101

Swanson, B. F. (1981). Simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technololgy, 33(12), 2498–2504. doi: https://doi.org/10.2118/8234-PA DOI: https://doi.org/10.2118/8234-PA

Vafaie, A., Kivi, I. R., Moallemi, S. A., & Habibnia, B. (2021). Permeability prediction in tight gas reservoirs based on pore structure characteristics: A case study from South Western Iran. Unconventional Resources, 1, 9-17. doi: https://doi.org/10.1016/j.uncres.2021.08.001 DOI: https://doi.org/10.1016/j.uncres.2021.08.001

Vaziri-Moghaddam, H., Kimiagari, M., & Taheri, A. (2006). Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies, 52(1), 41-51. doi: https://doi.org/10.1007/s10347-005-0018-0 DOI: https://doi.org/10.1007/s10347-005-0018-0

Wang, F., Yang, K., You, J., & Lei, X. (2019). Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results in Physics, 13, 102283. doi: https://doi.org/10.1016/j.rinp.2019.102283 DOI: https://doi.org/10.1016/j.rinp.2019.102283

Wang, S., Javadpour, F., & Feng, Q. (2016). Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Scientific Reports, 6(1), 20160. doi: https://doi.org/10.1038/srep20160 DOI: https://doi.org/10.1038/srep20160

Washburn, E. W. (1921). The Dynamics of Capillary Flow. Physical Review Journal Archive, 17(3), 273-283. doi: https://doi.org/10.1103/PhysRev.17.273 DOI: https://doi.org/10.1103/PhysRev.17.273

Webb, P. A., (2001). An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data. Micromeritics Instrument Corp., Norcross, Georgia.

Yang, H., & Deng, X. (2013). Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin. Petroleum Exploration and Development, 40(5), 549-557. doi: https://doi.org/10.1016/S1876-3804(13)60072-5 DOI: https://doi.org/10.1016/S1876-3804(13)60072-5

Yokoyama, T., & Takeuchi, S. (2009). Porosimetry of vesicular volcanic products by a water‐expulsion method and the relationship of pore characteristics to permeability. Journal of Geophysical Research: Solid Earth, 114(B2), 2008JB005758. doi: https://doi.org/10.1029/2008JB005758 DOI: https://doi.org/10.1029/2008JB005758

Zhang, P., Misch, D., Hu, F., Kostoglou, N., Sachsenhofer, R. F., Liu, Z., Meng, Q., & Bechtel, A. (2021). Porosity evolution in organic matter-rich shales (Qingshankou Fm.; Songliao Basin, NE China): Implications for shale oil retention. Marine and Petroleum Geology, 130, 105139. doi: https://doi.org/10.1016/j.marpetgeo.2021.105139 DOI: https://doi.org/10.1016/j.marpetgeo.2021.105139

Zhao, X., Sun, M., Ukaomah, C. F., Ostadhassan, M., Cui, Z., Liu, B., & Pan, Z. (2023). Pore connectivity and microfracture characteristics of Longmaxi shale in the Fuling gas field: Insights from mercury intrusion capillary pressure analysis. Gas Science and Engineering, 119(A), 205134. doi: https://doi.org/10.1016/j.jgsce.2023.205134 DOI: https://doi.org/10.1016/j.jgsce.2023.205134

Zhang, X.-S., Wang, H.-J., Ma, F., Sun, X.-C., Zhang, Y., & Song, Z.-H. (2016). Classification and characteristics of tight oil plays. Petroleum Science, 13(1), 18-33. doi: https://doi.org/10.1007/s12182-015-0075-0 DOI: https://doi.org/10.1007/s12182-015-0075-0

Artículos más leídos del mismo autor/a