Two dimensional finite difference simulation of magnetotelluric and magnetic variation soundings when the source field is considered
Contenido principal del artículo
Resumen
Se describe un algoritmo de diferencias finitas en dos dimensiones para simular sondeos magnetotelúricos (MT) y de variaciones magnéticas (VM). Este algoritmo fue desarrollado con el objeto de comparar estudios de resistividad aparente realizados con uno y otro método. Se considera una fuente de campo con geometría finita. Se presentan resultados de una simulación de este tipo de sondeos en Islandia para ilustrar las aplicaciones de este algoritmo.
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
BJÖRNSSON, A., 1976. Electrical resistivity of layer 3 in the Icelandic crust, Visindafelag lslendiga (Science Society of Iceland), Greinar, V, 1-22.
BREWITT-TAYLOR, C. R. and J. T. WEAVER, 1976. On the finite difference solution of two-dimensional induction problems. Geophys. J. R. Astr. Soc., 47, 375-396. DOI: https://doi.org/10.1111/j.1365-246X.1976.tb01280.x
CAGNIARD, L., 1953. Basic theory of the magnetotelluric method of geophysical prospecting, Geophysics, 18, 605-635 DOI: https://doi.org/10.1190/1.1437915
HERMANCE, J. F., 1976. General templates for finite difference simulation of two-dimensional electrical inhomogeneities. Internal Report Geophysical Laboratory, Department of Geological Sciences, Brown University.
HERMANCE, J. F., 1978. Electromagnetic induction in the earth by moving ionospheric current systems, Geophys. J. R. Astr. Soc., 55, 557-576. DOI: https://doi.org/10.1111/j.1365-246X.1978.tb05927.x
HIBBS, R. D. and F. W. JONES, 1973 Electromagnetic induction in the earth by a non-symmetric non-uniform source. J. Geomag. Geoelectr., 25, 75-86. DOI: https://doi.org/10.5636/jgg.25.75
JONES, F. W. and L. J. PASCOE, 1971. A general computer program to determine the perturbation of alternating electric currents in a two dimensional model of a region of uniform conductivity with an embedded inhomogeneity. Geophys. J. R. Astr. Soc., 23, 3-30. DOI: https://doi.org/10.1111/j.1365-246X.1971.tb01844.x
KUCKES, A. F., 1973a. Relations between electrical conductivity of a mantle and fluctuating magnetic fields. Geophys. J. Roy. Astron. Soc., 32, 119-131. DOI: https://doi.org/10.1111/j.1365-246X.1973.tb06523.x
KUCKES, A. F., 1973b. Correspondence between the magnetotelluric and field perturbation depth analyses for measuring electrical conductivity. Geophys. J. R. Astr. Soc., 32, 381-385. DOI: https://doi.org/10.1111/j.1365-246X.1973.tb05838.x
PRAUS, O., 1976. Numerical solutions of the MT field in inhomogeneous structures, Geoelectric and Geothermal Studies (East-Central Europe, Soviet Asia) KAPG Geophysical Monograph. Akademiai Kiado, Budapest.
PRICE, A. T., 1962. The theory of magnetotelluric methods when the source field is considered. J. Geophys. Res., 6 7, 5, 1907-1918. DOI: https://doi.org/10.1029/JZ067i005p01907
RAMO, S., J. R. WHINNERY and T. VAN DUZER, 1965. Fields and waves in communication electronics. John Wiley and Sons, Inc., New York, NY.
SCHMUCKER, U., 1970. Anomalies of geomagnetic variations in the south western United States. Bull. Scripps Inst. Oceanogr., 13.
THAYER, R. E., A. BJÖRNSSON, L. ALVAREZ and J. F. HERMANCE, 1981. Magma genesis and crustal spreading in the northern neovolcanic zone of Iceland: Telluric-magnetotelluric constraints. Geophys. J. R. Astr. Soc., 65, 423-442. DOI: https://doi.org/10.1111/j.1365-246X.1981.tb02720.x
WILLIAMSON, K., C. HEWLETT and Y. TAMMEMAGI, 1974. Computer modelling of electrical conductivity structures. Geophys. J. R. Astr. Soc., 37, 533-536. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb04102.x