Geomagnetic storm sudden commencements and their possible sources at the sun
Contenido principal del artículo
Resumen
Se analizan seis casos específicos de tormentas geomagnéticas con comienzo repentino (SC) durante 1978 y 1979 con el prop6sito de determinar los eventos solares (ráfagas. erupciones de filamentos 0 fenómenos transitorios en hoyos coronales) que las produjeron. Se utilizan las posiciones obtenidas por Hewish y Bravo (1986) mediante las observaciones de centelleo interplanetario (IPS) para las fuentes de los choques cuya llegada a la Tierra provocó los SCs. Tres de estos eventos fueron ya asociados por otros autores a alguna ráfaga de erupción de filamento y los otros tres no han sido discutidos nunca ya que no hubo nifaga 0 estallido de filamento alguno en todo el Sol durante los cinco días anteriores al inicio del SC. En todos los casos se encontró un hoyo coronal en 0 muy cerca del centro de la regi6n fuente estimada por IPS. Se discute la posibilidad de que ciertos cambios bruscos en los hoyos coronales puedan dar origen a la formación de choques en el medio interplanetario con las características de los observados.
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Citas
AKASOFU, S. I. and Li-Her Lee, 1989. Modeling of an interplanetary disturbance event tracked by the interplanetary scintillation method. Planet. Space Sci., 37, 73. DOI: https://doi.org/10.1016/0032-0633(89)90070-6
BORRINI, G., J. T. GOSLING, S. J. BAME and W. C. FELDMAN. 1982. An analysis of the shock wave disturbances observed at 1AU from 1971 through 1978. J. Geophys. Res., 87, 4365. DOI: https://doi.org/10.1029/JA087iA06p04365
BRAVO, S., B. MENDOZA, R. PEREZ-ENRIQUEZ and J. VALDES-GALICIA, 1987. Actividad de hoyos coronales de baja latitud. Rev. Mex. Astron. Astrof. 14, 688.
BRAVO, S., B. MENDOZA, R. PEREZ-ENRIQUEZ and J. VALDES-GALICIA, 1988. On the role of equatorial coronal holes in cosmic ray modulation. Ann. Geophys., 6, 377.
BRAVO, S. and B. MENDOZA, 1989. A discussion about the geometry of the Skylab north polar coronal hole. Astrophys. J., 338, 1171. DOI: https://doi.org/10.1086/167267
BRAVO, S. and J. OTAOLA, 1990. The relation between aurorae and coronal holes. Ann. Geophys., 8, 315.
BRAVO, S. and R. PEREZ-ENRIQUEZ, 1991. The relation between coronal mass ejections associated to interplanetary shocks and coronal holes. J. Geophys. Res. (submitted).
BRAVO, S., B. MENDOZA and R. PEREZ-ENRIQUEZ, 1991. Coronal holes as sources of large-scale solar wind disturbances and geomagnetic perturbations. J. Geophys. Res. (in press).
CANE, H. V., 1985. The evolution of interplanetary shocks. J. Geophys. Res., 90, 191. DOI: https://doi.org/10.1029/JA090iA01p00191
CANE, H. V., 1988. The large-scale structure of flare-associated interplanetary shocks. J. Geophys. Res., 93, 1. DOI: https://doi.org/10.1029/JA093iA01p00001
CANE, H. V. and R G. STONE, 1984. Type II solar radio bursts, interplanetary shocks, and energetic particle events. Astrophys. J., 282, 339. DOI: https://doi.org/10.1086/162207
CANE, H. V., S. W. KAHLER and N. R SHEELEY, Jr., 1986. Interplanetary shocks preceded by solar filament eruptions. J. Geophys. Res., 91, 13321. DOI: https://doi.org/10.1029/JA091iA12p13321
CHAO, J. K. and R. P. LEPPING, 1974. A correlative study of SCs, interplanetary shocks and solar activity. J. Geophys. Res., 79, 1799. DOI: https://doi.org/10.1029/JA079i013p01799
DRYER, M., S. T. WU and S. M. HAN, 1980. Two-Dimensional, time-dependent MHD solution of the disturbed solar wind due to representative flare-generated and coronal hole-generated disturbances. Geofísica Internacional, 19, 1. DOI: https://doi.org/10.22201/igeof.00167169p.1980.19.1.819
DRYER, M., 1982. Coronal transient phenomena. Space Sci. Rev., 33, 233. DOI: https://doi.org/10.1007/BF00213256
HASAN, S. S. and P. VENKATAKRISHNAN, 1982. Transient response of the solar wind to changes in flow geometry. Solar Phys., 80, 385. DOI: https://doi.org/10.1007/BF00147985
HEWISH, A. and S. BRAVO, 1986. The sources of large-scale heliospheric disturbances. Solar Phys., 106, 185. DOI: https://doi.org/10.1007/BF00161362
HEWISH, A., S. J. TAPPIN and G. R. GAPPER, 1985. The origin of strong interplanetary shocks. Nature. 314, 137. DOI: https://doi.org/10.1038/314137a0
HUNDHAUSEN, A. J., D. G. SIME, R. T. HANSEN and S. F. HANSEN, 1980. Polar coronal holes and cosmic ray modelation. Science. 207, 761. DOI: https://doi.org/10.1126/science.207.4432.761
JOSELYN, J. A. and P. S. McINTOSH, 1981. Disappearing solar filaments: a useful predictor of geomagnetic activity. J. Geophys. Res., 86, 4555. DOI: https://doi.org/10.1029/JA086iA06p04555
KRIEGER, A. S., 1977. In: J. B. Zirker (Ed.). Coronal holes and high speed wind streams. Colorado Ass. Univ. Press. p. 71.
NOLTE, J. T., M. GERASSIMENKO, A. S. KRIEGER and C. V. SOLODYNA, 1978. Coronal hole evolution by sudden large scale changes. Sol. Phys. 56, 153, DOI: https://doi.org/10.1007/BF00152640
PUDOVKIN, M. I., S. A. ZAITSEVA and E. E. BENEVOLENSKA, 1979. The structure and parameters of flare streams. J. Geophys. Res., 84, 6649. DOI: https://doi.org/10.1029/JA084iA11p06649
SAKURAI, K., 1973. Expansion pattern of flare-associated disturbances near earth's orbit around October 23 to November 4, 1968. Nat. Phys. Sci., 246, 70. DOI: https://doi.org/10.1038/physci246070a0
SCHWENN, R, 1983. Direct correlation between coronal transients and interplanetary disturbances. Space Sci. Rev., 34,85. DOI: https://doi.org/10.1007/BF00221199
SHEELEY, N. R., Jr., R. A. HOWARD, M. J. KOOMEN, D. J. MICHELS, R. SCHWENN, K. H. MÜLHAÜSER and H. J. ROSENBAUER, 1985. Coronal mass ejections and interplanetary shocks. J. Geophys. Res., 90, 163. DOI: https://doi.org/10.1029/JA090iA01p00163
SHEELEY, N. R., Y. M. WANG and J. W. HARVEY, 1989. The effect of newly erupting flux on the polar coronal holes. Sol. Phys., 119, 323. DOI: https://doi.org/10.1007/BF00146182
SOLODYNA, C. V., H. S. KRIEGER and J. T. NOLTE, 1977. Observations of the birth of a small coronal hole. Sol. Phys., 54, 123. DOI: https://doi.org/10.1007/BF00146428
TANG, F., B. T. TSURUTANI, W. D. GONZALEZ, S. I. AKASOFU and E. J. SMITH, 1989. Solar sources of interplanetary southward Bz events responsible for major magnetic storms (1978-1979). J. Geophys. Res., 94, 3539. DOI: https://doi.org/10.1029/JA094iA04p03535
TAPPIN, S. J., 1987. Numerical modeling of scintillation variations from interplanetary disturbances. Planet. Space Sci., 35, 271. DOI: https://doi.org/10.1016/0032-0633(87)90153-X
WAGNER, W. T., 1984. Coronal mass ejections. Ann. Rev. Astron. Astrophys., 22, 267. DOI: https://doi.org/10.1146/annurev.aa.22.090184.001411
WEBB, D. F., P. S. McINTOSH, J. T. NOLTE and C. V. SOLODYNA, 1978. Evidence linking coronal transients to the evolution of coronal holes. Sol. Phys., 58, 389. DOI: https://doi.org/10.1007/BF00157283
WU, S. T., M. DRYER and S. M. HAN, 1983. Non-planar MHD model for solar flare-generated disturbances in the heliospheric equatorial plane. Sol. Phys., 84, 395. DOI: https://doi.org/10.1007/BF00157472