On large-scale quasi-stationary waves

Contenido principal del artículo

Lodovico La Valle

Resumen

Se ha demostrado que las ondas casi estacionarias de gran escala dependen esencialmente de la producción de vorticidad en los niveles intermedios de la atmósfera (La Vallee Celentano, 1975). El presente estudio de la producción de vorticidad en Ps/2 durante cuatro meses del año Geofísico Internacional en el hemisferio norte, indica que la orografía explica cerca del veinte por ciento de la producción de vorticidad sobre el terreno en declive, mientras que la advección de temperatura y el calentamiento diabático en la mitad inferior de la atmósfera son responsables del cincuenta por ciento de la producción de vorticidad sobre el mar o la tierra plana.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
17108
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Detalles del artículo

Cómo citar
La Valle, L. (1976). On large-scale quasi-stationary waves. Geofísica Internacional, 16(2), 95–115. https://doi.org/10.22201/igeof.00167169p.1976.16.2.943
Sección
Artículo

Citas

ACADEMIA SINICA, STAFF MEMBERS, 1958. On the general circulation over Eastern Asia (III). Tellus, 10 : 299-312. DOI: https://doi.org/10.1111/j.2153-3490.1958.tb02018.x

BOLIN, B., 1950. On the influence of the earth's orography on the general character of the westerlies. Tellus, 3 : 184-195. DOI: https://doi.org/10.1111/j.2153-3490.1950.tb00330.x

BROWN, J. A., 1964. A diagnostic study of the tropospheric diabatic heating and the generation of available potential energy. Tellus, 16 : 371-388. DOI: https://doi.org/10.1111/j.2153-3490.1964.tb00174.x

CHARNEY, J. G. and A. A. ELIASSEN, 1949. A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1 : 38-54. DOI: https://doi.org/10.3402/tellusa.v1i2.8500

CLAPP, P. F., 1961. Normal heat sources and sinks in the lower troposphere in winter. Monthly Weather Review, 89 : 147-162. DOI: https://doi.org/10.1175/1520-0493(1961)089<0147:NHSASI>2.0.CO;2

DEROME, J. and A. WIIN-NIELSEN, 1971. The response of a middle-latitude model atmosphere to forcing by topography and stationary heat sources. Monthly Weather Review, 99 : 564-576. DOI: https://doi.org/10.1175/1520-0493(1971)099<0564:TROAMM>2.3.CO;2

DOOS, B. R., 1962. The influence of exchange of sensible heat with the earth's surface on the planetary flow. Tellus, 14 : 133-147. DOI: https://doi.org/10.1111/j.2153-3490.1962.tb00127.x

HOLOPAINEN, E., 1975. Diagnostic studies on the interaction between the time-mean flow and the large-scale transient fluctuations in the atmosphere. Department of Meteorology, University of Helsinki, Report No. 8, 14 pp.

LA VALLE, L., 1962. Variazione della pressione nei grandi moti atmosferici. Rivista di Meteorologia Aeonautica, 22.

LA VALLE, L. and R. CAPONIGRO, 1973. Sources and sinks of wind vorticity at 500 mb over the whole globe. Annalen der Meteorologie, 6 : 197-205.

LA VALLE, L. e R. CELENTANO, 1975. Dipendenza delle onde quasi stazionarie della sorgenti e dai pozzi di vorticità. Rivista di Meteorologia Aereonautica, 35 : 31-38.

MANABE, S. and T. B. TERPSTRA, 1974. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. Journal of Atmospheric Sciences, 31 : 3-42. DOI: https://doi.org/10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2

MINTZ, Y., 1965. Very long term global integration of the primitive equations of atmospheric motion. WMO Technical Note No. 66 : 141-167.

MIYAKODA, K., 1975. Weather forecasts and the effects of the sub-grid scale processes. Seminars on scientific foundation of medium range weather forecasts. Part II. European Centre for Medium Range Forecasts: p. 448.

ROSSBY, C. G. and collaborators, 1939. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action. Journal of marine research, 2 : 38-55. DOI: https://doi.org/10.1357/002224039806649023

ROWNTREE, P. R., 1975. Thermal and orographic forcing of the northern hemisphere winter circulation in a numerical model. WMO No. 421 (Proceedings of the WMO/IAMAP symposium on long-term climatic fluctuations. Norwich 1975) : 355-364.

SALTZMAN, B., 1959. On the maintenance of the large-scale quasi-permanent disturbances in the atmosphere. Tel/us, 9 : 425-431. DOI: https://doi.org/10.1111/j.2153-3490.1959.tb00052.x

SALTZMAN, B., 1968. Sufarce boundary effects on the general circulation and macroclimate: a review of the theory of the quasi-stationary perturbations in the atmosphere. Meteorological Monographs, 8, No. 30 : 4-19. DOI: https://doi.org/10.1007/978-1-935704-38-6_2

SMAGORINSKY, J., 1953. The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quarterly Journal of the Royal Meteorological Society, 79 : 342-366. DOI: https://doi.org/10.1002/qj.49707934103

SUTCLIFFE, R. C., 1951. Mean upper contour patterns of the northern hemisphere: the thermal-synoptic view point. Quarterly Journal of Royal Meteorological Society, 77 : 435- 440. DOI: https://doi.org/10.1002/qj.49707733309