Case studies of frictional dissipation in numerically simulated clouds

Contenido principal del artículo

Francis. P. Richards
Geirmundir Arnason

Resumen

Se investigan, por medio de un modelo bidimensional, los efectos de la difusión turbulenta parametrizada de calor y cantidad de movimiento. Los experimentos númericos incluyen, tanto coeficientes de intercambio constantes, como variables y los resultados se comparan con aquellos experimentos en los que la difusión no se incluye.
La comparación demuestra que sin difusión turbulenta el desarrollo simulado de las nubes es irrealmente intenso. En contraste, ambos tipos de difusión turbulenta simulada evitan desarrollos excesivos y producen nubes cuyas características generales son similares a las de las nubes observadas. De los dos tipos de difusión parametrizada, la de coeficiente de intercambio variable parece dar los mejores resultados. Esto se refleja en un estado inicial, más realista, del desarrollo de las nubes y en una incorporación lateral turbulenta del aire, más fuerte cerca de las fronteras de las nubes, la cual está de acuerdo con las observaciones.

Detalles del artículo

Cómo citar
Richards, F. P., & Arnason, G. (1975). Case studies of frictional dissipation in numerically simulated clouds. Geofísica Internacional, 15(1), 1–44. https://doi.org/10.22201/igeof.00167169p.1975.15.1.951
Sección
Artículo

Citas

ÁRNASON, G., 1974. On the problem of multivalued pressure in the theory of convection. Journal of the Atmospheric Sciences, 31 : 1169-1171 DOI: https://doi.org/10.1175/1520-0469(1974)031<1169:OTPOMP>2.0.CO;2

ÁRNASON, G. and R. S. GREENFIELD, 1968. Relationships between tropical precipitation and kinematic cloud models. Final Report, Contract DA 28-043 AMC 01212(E), The Travelers Research Center, Inc., Hartford, Connecticut. DOI: https://doi.org/10.21236/AD0654129

ÁRNASON, G., R. S. GREENFIELD and E. A. NEWBURG, 1968. A numerical experiment in dry and moist convection including the rain stage. Journal of the Atmospheric Sciences, 25 : 404-415. DOI: https://doi.org/10.1175/1520-0469(1968)025<0404:ANEIDA>2.0.CO;2

ÁRNASON, G. and E. A. NEWBURG, 1966. Relationships between tropical precipitation and kinematic cloud models. Report No. 8, Contract DA 28-043 AMC 0I2l9(E), The Travelers Research Center, Inc., Hartford, Connecticut.

ASAI, T., 1964. Cumulus convection in the atmosphere with vertical wind shear: A numerical experiment. Journal of the Meteorological Society of Japan, 42 : 245-259. DOI: https://doi.org/10.2151/jmsj1923.42.4_245

BYKOVA, L. R. and L T. MA TVEEV, 1966. Evolution of cloud and temperature fields in a moving cyclone (A numerical experiment). Akademiia Nauk SSSR. Izvestija. Atmospheric and Oceanic Physics, 2 : 905-919.

CHOU, H.P., 1962. Development of cumulus clouds. Akademiia Nauk SSSR. Bulletin of the Academy of Sciences of the U.S.S.R. Geophysics Series, 4 : 358-363.

DEARDORFF, J. W., 1971. On the magnitude of the subgrid scale eddy coefficient. Journal of Computational Physics, 7 : 120-133. DOI: https://doi.org/10.1016/0021-9991(71)90053-2

DEARDORFF, J. W., 1972. Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29 : 91-115. DOI: https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2

DRAKE, R. L., P. D. COYLE and D. P. ANDERSON, 1974. The effect of nonlinear eddy coefficients on rising line thermals. Journal of the Atmospheric Sciences, 31 : 2046-2057. DOI: https://doi.org/10.1175/1520-0469(1974)031<2046:TEONEC>2.0.CO;2

KESSLER, E., 1969. On the distribution and continuity of water substance in atmospheric circulations. American Meteorological Society, Meteorological Monographs, No. 10, Boston, Massachusetts. DOI: https://doi.org/10.1007/978-1-935704-36-2_1

LILLY, D. K., 1962. On the numerical simulation of buoyant convection. Tellus, 14 : 148-172. DOI: https://doi.org/10.1111/j.2153-3490.1962.tb00128.x

LILLY, D. K., 1966. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. National Center for Atmospheric Research Manuscript No. 123, Boulder, Colorado.

LILLY, D. K., 1967. The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Sci. Comp. Symp. on Environ. Sci., Nov. 14-16, Yorktown Heights, New York.

MURRAY, F. W., 1965. Some problems associated with the modeling of moist atmospheric thermal convection. Proc. Internal. Conf on Cloud Physics, Tokyo and Sapporo, Japan, IAMAP/WMO, Sci. Council of Japan and Met. Soc. of Japan, pp. 6-10.

MURRAY, F. W., 1970. Numerical models of a tropical cumulus cloud with bilateral and axial symmetry. Monthly Weather Review, 98 : 14-28. DOI: https://doi.org/10.1175/1520-0493(1970)098<0014:NMOATC>2.3.CO;2

MURRAY, F. W., 1971. Humidity augmentation as the initial impulse in a numerical cloud model. Monthly Weather Review. 99 : 3748. DOI: https://doi.org/10.1175/1520-0493(1971)099<0037:HAATII>2.3.CO;2

OGURA, Y. 1963. The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. Journal of the Atmospheric Sciences, 20 : 407-424. DOI: https://doi.org/10.1175/1520-0469(1963)020<0407:TEOAMC>2.0.CO;2

OGURA, Y. and J. G. CHARNEY, 1962. A numerical model of thermal convection in the atmosphere. Proc. Internat. Symp. Num. Wea. Pred., Tokyo, Met. Soc. of Japan, pp. 431-452.

ORVILLE, H. D. 1965. A numerical study of the initiation of cumulus clouds over mountainous terrain. Journal of the Atmospheric Sciences, 22 : 684-699. DOI: https://doi.org/10.1175/1520-0469(1965)022<0684:ANSOTI>2.0.CO;2

ORVILLE, H. D. and L. J. SLOAN, 1970. Effects of higher order advection techniques on a numerical cloud model. Monthly Weather Review, 98 : 7-13. DOI: https://doi.org/10.1175/1520-0493(1970)098<0007:EOHOAT>2.3.CO;2

RICHARDSON, L. F., 1926. Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc., 110 : 709-737. DOI: https://doi.org/10.1098/rspa.1926.0043

SCORER, R. S. and F. H. LUDLAM, 1953. Bubble theory of penetrative convection. Quarterly Journal of the Royal Meteorological Society, 79 : 94-103. DOI: https://doi.org/10.1002/qj.49707933908

SHUMAN, F. G., 1957. Numerical methods in weather prediction: II. Smoothing and filtering. Monthly Weather Review, 85 : 357-361. DOI: https://doi.org/10.1175/1520-0493(1957)085<0357:NMIWPI>2.0.CO;2

SMAGORINSKY, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91 : 99-164. DOI: https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

STEINER, J. T., 1973. A three-dimensional model of cumulus cloud development. Journal of the Atmospheric Sciences, 30 : 414-435. DOI: https://doi.org/10.1175/1520-0469(1973)030<0414:ATDMOC>2.0.CO;2

TAKEDA, T., 1965. The downdraft in a convective shower cloud: a numerical calculation. Proc. Internat. Conf. on Cloud Physics, Tokyo and Sapporo, Japan, IAMAP/WMO, Sci. Council of Japan and Met. Soc. of Japan, pp. 30-33.

TAKEDA, T., 1971. Numerical simulation of a precipitating convective cloud: The formation of a 'long-lasting' cloud. Journal of the Atmospheric Sciences, 28 : 350-376. DOI: https://doi.org/10.1175/1520-0469(1971)028<0350:NSOAPC>2.0.CO;2

WARNER, J., 1970. The microstructure of cumulus clouds: III. The nature of the updraft. Journal of the Atmospheric Sciences, 27 : 682-688. DOI: https://doi.org/10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;2

WILHELMSON, R., 1974. The life cycle of a thunderstorm in three dimensions. Journal of the Atmospheric Sciences, 31 : 1629-1651. DOI: https://doi.org/10.1175/1520-0469(1974)031<1629:TLCOAT>2.0.CO;2

WILHELMSON, R. and Y. OGURA, 1972. The pressure perturbation and the numerical modeling of a cloud. Journal of the Atmospheric Sciences, 29 : 1295-1307. DOI: https://doi.org/10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
2,4 promedio

##plugins.generic.pfl.reviewerProfiles##  N/D

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
N/D
32% con financiadores
##plugins.generic.pfl.competingInterests## 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
Artículos aceptados: 2%
33% aceptado
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

Indexado: {$indexList}

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
Geofísica Internacional