Effects of clouds on the radiative heat exchange in the atmosphere
Contenido principal del artículo
Resumen
Las nubes son los principales reguladores del flujo radiativo. A su vez las nubes mismas están sujetas a efectos directos e indirectos de la radiación. Los efectos directos se producen mediante absorción y emisión de radiación por las nubes. Los efectos indirectos se producen mediante el calentamiento de la superficie terrestre por la radiación solar, lo cual define el transporte de humedad hacia la atmósfera y la formación de las nubes. En este trabajo se presentan algunos resultados de investigaciones realizados sobre los flujos radiativos bajo condiciones de nubosidad. Se muestran algunos métodos simples aproximados de cálculos y las regularidades del comportamiento del campo de nubes dependiente de los parámetros básicos, así como los efectos de retroalimentación. Este trabajo se pretende utilizar en los problemas de dinámica de la atmósfera de gran escala y en el programa del GARP.
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
ADEM, J., 1962. On the theory of the general circulation, Tellus, 14 (1) : 102-115. DOI: https://doi.org/10.1111/j.2153-3490.1962.tb00123.x
AVASTE, O. A., E. M. FEIGELSON, L. D. KRASNOKUTSKAYA, 1969. On transmission and absorption of solar radiation in cloudless atmosphere. Izvestia. Atmospheric and Oceanic Physics, vol. 5(12) : 762-765.
AVASTE, O. A. and G. N. VAINIKKO, 1972. Results of calculation of reflected and transmitted solar radiation fluxes under partial cloudiness. Collection of articles "Statistical studies of partial cloudiness", Publications of the Soviet Geophysical Committee, Series Meteorology.
BUSYGIN, V. P., E. M. FEIGELSON and N. A. YEVSTRATOV, 1973. Optical properties of cumuli clouds and radiative fluxes with cumuli clouds. Izvestia. Atmospheric and Oceanic Physics, vol. 9(12) : 648.
Collection of articles "Heat exchange in the atmosphere", issue of the Institute of Atmospheric Physics of the Acad. of Sci. of the USSR, Institute of Physics; and Astronomy of the Estonian Acad. of Sci., Ukranian Hydrometeorological Institute. "Nauka", Moscow, 1972.
FEIGELSON, E. M., 1970. Radiative heat exchange and clouds. Hydrometeoizdat, Leningrad. There is a translation in English by the I PST for NOAA under the title: "Radiant heat transfer in a cloudy atmosphere".
FEIGELSON, E. M., B. A. KARGIN and L. D. KRASNOKUTSKAYA, 1972. Reflection and absorption of the solar radiation by cloud layers. Izvestia. Atmospheric and Oceanic Physics, vol. 8(5) : 287-293.
FEIGELSON, E. M., 0. I. KASATKINA, L.B. KRASILSCHIKOV, E. P. KRO· POTKINA, L. B. RUDNEVA and R. G. TIMANOVSKAYA, 1972. To the problem of objective determination of cloudiness characteristics. Meteorology and Hydrology, 8.
FEIGELSON, E. M. and L. D. KRASNOKUTSKAYA, 1973. Calculation of infra-red fluxes of solar radiation in cloudy atmosphere. Izvestia. Atmospheric and Oceanic Physics, vol. IX (l0).
PETOUKHOV, V. K. and E. M. FEIGELSON, 1973. Model of longperiod process of heat and water exchange in the atmosphere over the ocean. Izvestia. Atmospheric and Oceanic Physics, vol. IX(4) : 193-198.
KAUTH, R. J. and J. L. PENQUITE, 1966. The probability of clear lines of sight through a cloudy atmosphere, The Univers. of Michigan. DOI: https://doi.org/10.1175/1520-0450(1967)006<1005:TPOCLO>2.0.CO;2
KHRGUIAN, A. Kh., 1953. Physics of the atmosphere. Gostekhizdat.
MONIN, A. S., 1969. Weather forecast as a physical problem. "Nauka", p. 1-199.
NIYLISK, H. Yu. and L. E. SAMMEN, 1969. Integral transmission function of the atmosphere for calculations of the heat radiation field in the atmosphere. Collection of articles "Tables of radiation characteristics of the atmosphere", Inst. of Physics and Astronomy Est. A cad. of Sci., Tartu.
PETOUKHOV, V. K., 1974. Long-period process of heat and water exchange under partial cloudiness. Izvestia. Atmospheric and Oceanic Physics, vol. X(3).
RASCHKE, E., 1968. The radiation balance of the earth-atmosphere system from radiation measurements of "Nimbus-II" meteorological satellite, NASA Techn. Note, D-4589.
RASCHKE, E., 1972. Stochastic structure of cloudiness and radiation fields, Issue of the Inst. of Physics and Astronomy of the Estonian Acad. of Sciences, Tartu.
SMAGORINSKY, J., 1960. On the dynamical prediction of large-scale condensation by numerical methods, Monograph No. 5, Physics of precipitation, Amer. Geophys. Union. p. 71-78. DOI: https://doi.org/10.1029/GM005p0071
TIMANOVSKA YA, R. G., 1973. Statistical structure of fluxes of the direct and total solar radiation near the ground with cumuli clouds. Transactions of the Main Geophysical Observatory, issue 297.
VAINIKKO, G. M., 1972. Equation of mean intensity of radiation with partial cloudiness. Collection of articles "Statistical study of partial cloudiness", Publications of the Soviet Geophysical Committee, Series "Meteorology".
VAN DE HULST, H. C. and W. M. IRVINE, 1963. Scattering in model planetary atmospheres. Mem. Soc. Roy, Sci. Liege, Ser. 5, 7(1).
YEVSEIEVA, M. G. and E. L. PODOLSKA YA, 1970. Integral transmission function of solar radiation in the near infrared part of the spectrum. Transactions of the Leningrad Hydrometeorological Institute, issue 40.
ZUBKOVSKY, S. L. and D. F. TIMANOVSKY, 1965. Experimental studies of the turbulent regime in the near water surface layer of the air. Izvestia, Atmospheric and Oceanic Physics, vol. I (10), p. 587-590.