Climate models and variations in the solar constant

Contenido principal del artículo

William D. Sellers

Resumen

Se da un resumen de los resultados obtenidos por varios autores, que usan modelos climáticos simples con promedios zonales y anuales. Se demuestra que la mayoría de estos resultados puede explicarse fácilmente usando un modelo promediado globalmente. Se demuestra también que, según la parametrización usada, el porcentaje de cambio de constante solar, relativo al valor actual, requerido en el modelo (a) para iniciar una época glacial es de -2 a -5 por ciento, (b) para producir una tierra cubierta de hielo es -6 a -14 por ciento, y (c) para iniciar el proceso de derretimiento en una tierra cubierta de hielo es de -8 a + 33 por ciento. Por lo tanto, el margen de posible error aumenta significativamente al alejarse de las condiciones actuales.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
17661
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Detalles del artículo

Cómo citar
Sellers, W. D. (1974). Climate models and variations in the solar constant. Geofísica Internacional, 14(4), 303–315. https://doi.org/10.22201/igeof.00167169p.1974.14.4.965
Sección
Artículo

Citas

BUDYKO, M. I., 1969. The effect of solar radiation variations on the climate of the earth. Tellus, 21 : 611-619. DOI: https://doi.org/10.1111/j.2153-3490.1969.tb00466.x

BUDYKO, M. I., 1972. The future climate. Trans., Amer. Geophys. Union, 53 : 868-874. DOI: https://doi.org/10.1029/EO053i010p00868

CHYLEK, P. and J. A. COAKLEY, Jr., 1975. Analytical analysis of a Budy-ko-type climate model. Journal of Atmospheric Sciences, 32 : 675-679. DOI: https://doi.org/10.1175/1520-0469(1975)032<0675:AAOABT>2.0.CO;2

DEFANT, A., 1921. Die Zirkulation der Atmosphäre in den Gemässigten Breiten der Erde-Grundzüge einer Theorie der Klimaschwankungen. Geograf. Ann., 3 : 209-266. DOI: https://doi.org/10.1080/20014422.1921.11880911

DWYER, H. A. and T. PETERSEN, 1973. Time-dependent global energy modeling. Journal of Applied Meteorology, 12 : 36-42. DOI: https://doi.org/10.1175/1520-0450(1973)012<0036:TDGEM>2.0.CO;2

ERIKSSON, E., 1968. Air-ocean-icecap interactions in relation to climatic fluctuations and glaciation cycles. Meteorological Monographs, 8, 30 : 68-92. DOI: https://doi.org/10.1007/978-1-935704-38-6_6

FAEGRE, A., 1972. An intransitive model of the earth-atmosphere ocean system. Journal of Applied Meteorology, 11 : 4-6. DOI: https://doi.org/10.1175/1520-0450(1972)011<0004:AIMOTE>2.0.CO;2

GAL-CHEN, T. and S. H. SCHNEIDER, 1975. Energy balance climate modeling: comparison of radiative and dynamic feedback mechanisms. Tellus (to be published). DOI: https://doi.org/10.3402/tellusa.v28i2.10261

GORDON, H. B. and D. R. DAVIES, 1974. The effect of changes in solar radiation on climate. Quarterly Journal of the Royal Meteorological Society, 100 : 123-126. DOI: https://doi.org/10.1256/smsqj.42310

HELD, I. M. and M. J. SUAREZ, 1974. Simple albedo feedback models of the icecaps. Tellus, 26 : 613-629. DOI: https://doi.org/10.1111/j.2153-3490.1974.tb01641.x

NORTH, G., 1975a. Analytic solution to a simple climate model with diffusive heat transport. Journal of Atmospheric Sciences (to be published). DOI: https://doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2

NORTH, G., 1975b. Sensitivity of energy balance climate models to the trans-port mechanism. (Unpublished manuscript).

OPIK, E. J.,1965. Climatic changes in cosmic perspective. Icarus, 4 : 289-307. DOI: https://doi.org/10.1016/0019-1035(65)90006-0

PALTRIDGE, G. W., 1974. Global cloud cover and earth surface temperature. Journal of atmospheric Sciences, 31 : 1571-1576. DOI: https://doi.org/10.1175/1520-0469(1974)031<1571:GCCAES>2.0.CO;2

SAGAN C. and J. B. POLLACK, 1967. Anisotropic nonconservative scattering and the clouds of Venus. Journal of Geophys. Research, 72 : 469-477. DOI: https://doi.org/10.1029/JZ072i002p00469

SCHNEIDER, S. H. and T. GAL-CHEN, 1973. Numerical experiments in climate stability. Journal of Geophys. Research, 78 : 6182-6194. DOI: https://doi.org/10.1029/JC078i027p06182

SCHNEIDER, S. H. and W. M. WASHINGTON, 1973. Cloudiness as a global climatic feedback mechanism. Bulletin of the American Meteorological Society, 54 : 742 (abstract).

SELLERS, W. D., 1965. Physical Climatology. Univ. of Chicago Press, 272 pp.

SELLERS, W. D., 1969. A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology, 8 : 392400. DOI: https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2

SELLERS, W. D., 1973. A new global climatic model. Journal of Applied Meteorology, 12 : 241-254. DOI: https://doi.org/10.1175/1520-0450(1973)012<0241:ANGCM>2.0.CO;2

TEMPKIN, R. L., B. C. WEARE and F. M. SNELL, 1975. Feedback coupling of absorbed solar radiation by three model atmospheres with clouds. Journal of Atmospheric Sciences (to be published). DOI: https://doi.org/10.1175/1520-0469(1975)032<0873:FCOASR>2.0.CO;2

VONDER HAAR, T. H. and V. E. SUOMI, 1971. Measurements of the earth's radiation budget from satellites during a five-year period. Part 1: Extended time and space means. Journal of Atmospheric Sciences, 28 : 305-314. DOI: https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2