Hydraulic conductivities identification via Ensemble Kalman Filtering with transformed data considering the risk of systematic bias

Contenido principal del artículo

F. Vázquez-Guillén
Guichard Auvinet

Resumen

En hidrología subterránea, el conjunto de filtros Kalman (EnKF) se acopla con modelos del flujo y transporte de agua subterránea para resolver el problema inverso. Se han propuesto varias extensiones del EnKF para mejorar su desempeño al tratar con campos aleatorios no multi-gaussianos de la conductividad hidráulica. Una de esas variantes es el EnKF con transformación de datos (tEnKF), el cual utiliza la anamorfosis gaussiana dentro de una etapa de condicionamiento. Aunque esta transformación se ha utilizado en el pasado para identificar conductividades hidráulicas, estudios previos han ignorado el riesgo de introducir un sesgo sistemático en la evolución espaciotemporal del campo de la carga hidráulica durante las etapas de pronostico que las etapas de condicionamiento podrían no corregir conforme trascurre el tiempo. Este artículo propone que la aplicación del tEnKF en medios porosos aleatorios generados sintéticamente debe tener en cuenta este riesgo incorporando en el conocimiento a priori una estructura de correlación multi-gaussiana para las conductividades y adoptando un campo de referencia con estructura de correlación asimétrica. Como un ejemplo de esta aplicación, en este artículo se identifican conductividades hidráulicas utilizando el tEnKF resolviendo un problema de flujo monofásico, unidimensional, en un medio poroso aleatorio continuo. Se utilizan conceptos comunes en geoestadística para explicar las hipótesis en las que se basan el EnKF y el tEnKF y también para establecer un vínculo claro entre el tEnKF y la simulación estocástica de campos aleatorios condicionales.

Detalles del artículo

Cómo citar
Vázquez-Guillén, F., & Auvinet, G. (2017). Hydraulic conductivities identification via Ensemble Kalman Filtering with transformed data considering the risk of systematic bias. Geofísica Internacional, 56(4), 317–333. https://doi.org/10.22201/igeof.00167169p.2017.56.4.1825
Sección
Artículo

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
0
2,4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
N/D
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
2%
33%
Días para la publicación 
1696
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Geofísica Internacional