Forward modeling of spectral gamma-ray (SGR) logging in sedimentary formations

Contenido principal del artículo

Francisco Miguel Lechuga Lagos
Ambrosio Aquino López
Miguel Ángel Valdez Grijalva
José Oscar Campos Enríquez

Resumen

Proponemos un nuevo enfoque para mejorar el modelado directo del registro de rayos gamma espectral (SGR) al considerar los minerales radioactivos presentes en la roca como fuentes de rayos gamma. Este se basa en la teoría de la atenuación radiactiva. Los supuestos son: 1) los minerales con contenido de K40, U238, y Th232 son considerados fuentes radiactivas que están uniformemente distribuidas en la roca; 2) la radiactividad medida es proporcional a la concentración de minerales radiactivos e inversamente proporcional a la densidad aparente de la roca; 3) la radiactividad solo se atenúa por absorción de rayos gamma. El modelado directo fue probado usando un caso sintético de arenisca con minerales arcillosos y poros saturados con salmuera para analizar la sensibilidad de SGR a cambios en las relaciones de ilita/esmectita e ilita/mica y porosidades de la arenisca. Finalmente, el enfoque fue validado con 44 muestras de núcleo, siendo 22 de dos formaciones de gas en lutita y 22 de dos formaciones clásticas. El coeficiente de correlación de Pearson se aplicó para medir el desajuste entre los datos simulados y medidos de K, U, Th y SGR, obteniéndose valores de 0.82, 0.83, 0.61 y 0.57 respectivamente, y una mejora adicional de 0.87, 0.85, 0.65 y 0.69, respectivamente, fueron alcanzados aplicando inversión conjunta para los datos donde las relaciones ilita/esmectita e ilita/mica no fueron especificadas. La correlación lograda entre los datos simulados y observados sustenta la viabilidad del nuevo enfoque para el modelado directo propuesto de SGR.

Detalles del artículo

Cómo citar
Lechuga Lagos, F. M., Aquino López , A. ., Valdez Grijalva, M. Ángel ., & Campos Enríquez , J. O. . (2024). Forward modeling of spectral gamma-ray (SGR) logging in sedimentary formations. Geofísica Internacional, 63(2), 817–834. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1710
Sección
Artículo

Citas

Akoglu, H. (2018). User's guide to correlation coefficients. Turkish Journal of emergency medicine, 18(3), 91–93. doi: https://doi.org/10.1016/j.tjem.2018.08.001

Adams, J. A. & Weaver, C. E. (1958). Thorium-to-uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies. AAPG Bulletin, 42(2), 387–430. doi: https://doi.org/10.1306/0BDA5A89-16BD-11D7-8645000102C1865D

Alharthy, N., Al Kobaisi, M., Torcuk, M. A., Kazemi, H., and Graves, R. (2012). Physics and Modeling of Gas Flow in Shale Reservoirs. [Presentación de paper]. Abu Dhabi International Petroleum Exhibition and Conference held in Abu Dhabi, UAE. doi: https://doi.org/10.2118/161893-MS

Bassiouni, Z. (1994). Gamma Ray Log. In Schenewerk, P. A. & Pert, D. M. (Eds.), Theory, measurement, and interpretation of Well logs. Society of Petroleum Engineers, 4, 146–158. doi: https://doi.org/10.2118/9781555630560

Belknap, W. B., Dewan, J. T., Kirkpatrick, C., Mott, W. E., Pearson, A., and Rabson, W. (1959). API calibration facility for nuclear logs, drilling and production practices API, reprinted in Gamma-Ray, Neutron and Density Logging: SPWLA Reprint volume (1978), Soc. Prof. Well Log Analysts, Houston, Texas (1959).

Bigelow, E. L. (2002). Determining Porosity, Formation Factor, and Shaliness. In Baker Atlas (Eds.) Introduction to wireline log analysis, 137-184. Baker Hughes.

Bohacs, K. M. (1998). Contrasting expressions of depositional sequences in Mudrocks from Marine to non Marine Environs. In: Schieber, J., Zimmerle, W., Sethi, P. (Eds.), Shales and Mudstones. Basin Studies, Sedimentology and Paleontology Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1, 33-78.

Bohacs, K. M. and Miskell-Gerhardt, K. (1998). Well-log expression of lake strata; controls of lake-basin type and provenance, contrasts with marine strata [Presentación de paper]. at the AAPG Annual Meeting Expanded Abstracts, Tulsa, Oklahoma.

Brannon, H. and Osoba, J. (1956). Spectral gamma-ray logging. Petroleum Transactions of the AIME, 207(01), 30-35. doi: https://doi.org/10.2118/523-G

Chudi, O. and Simon, R. (2012). Petrophysical characterization of radioactive sands-integrating well logs and core information: A case study in the Niger delta. [Paper presented]. Nigeria Annual International Conference and Exhibition, Lagos, Nigeria. doi: https://doi.org/10.2118/163020-MS

Clavier, C., Hoyle, W., and Meunier, D. (1971). Quantitative interpretation of thermal neutron decay time logs: part I fundamentals and techniques. Journal of Petroleum Technology, 23(06), 743-755. doi: https://doi.org/10.2118/2658-A-PA

Day-Stirrat, R. J., Hillier, S., Nikitin, A., Hofmann, R., Mahood, R., and Mertens, G. (2021). Natural gamma-ray spectroscopy (NGS) as a proxy for the distribution of clay minerals and bitumen in the cretaceous McMurray formation, Alberta, Canada. Fuel, 288. doi: https://doi.org/10.1016/j.fuel.2020.119513

Duderstadt, J. J. and Hamilton, L. J. (1976). Neutron Transport. En A. Wiley (Ed.), Nuclear reactor analysis (pp. 103–148). John Wiley & Sons.

Ehsan, M. S., Rahman, M. F., Tabassum, N., Prodhan, M. M. H., Pervin, S., Siraz, M. M., Rahman, A. M., Yeasmin, S., & Mahal, S. F. (2019). The activity concentration of radionuclides (226ra, 232nd, and 40k) in soil samples and associated health hazards in Natore, Kushtia, and Pabna districts of Bangladesh. Journal of Bangladesh Academy of Sciences, 43(2),169–180. doi: https://doi.org/10.3329/jbas.v43i2.45738

Ellis, D. V. and Singer, J. M. (2007). Gamma Ray Devices. En A. Ellis, D.V., Singer, J.M. (Eds.) Well logging for earth scientists (pp. 267–288). Springer. doi: https://doi.org/10.1007/978-1-4020-4602-5_11

Evans, R. D. (1955). Attenuation and Absorption of Electromagnetic Radiation. In McGraw-Hill (Ed.) The atomic nucleus (pp. 711–745). McGraw-Hill New York.

Fertl, W. H. (1979). Gamma ray spectral data assists in complex formation evaluation. Petrophysics, 20(05).

Fertl, W. H., Chilingarian, G. V., & Yen, T. (1982). Use of natural gamma ray spectral logging in evaluation of clay minerals. Energy Sources, 6(4), 335-360. doi: https://doi.org/10.1080/00908318208946036

Ge, X., Fan, Y., Cao, Y., Li, J., Cai, J., Liu, J., and Wei, S. (2016). Investigation of organic related pores in unconventional reservoir and its quantitative evaluation. Energy & Fuels, 30(6), 4699-4709. doi: https://doi.org/10.1021/acs.energyfuels.6b00590

Gonzalez, J., Lewis, R., Hemingway, J., Grau, J., Rylander, E., & Schmitt, R. (2013). Determination of formation organic carbon content using a new neutron-induced gamma ray spectroscopy service that directly measures carbon [Presentación de paper]. SPWLA 54th annual logging symposium. doi: https://doi.org/10.1190/urtec2013-112

Hertzog, R., Colson, L., Seeman, O., O’Brien, M., Scott, H., McKeon, D., Wraight, P., Grau, J., Ellis, D., Schweitzer, J., et al. (1989). Geochemical logging with spectrometry tools. SPE Formation Evaluation, 4(02), 153-162. doi: https://doi.org/10.2118/16792-PA

Huang, R., Wang, Y., Cheng, S., Liu, S., and Cheng, L. (2015). Selection of logging-based TOC calculation methods for shale reservoirs: A case study of the Jiaoshiba shale gas field in the Sichuan basin. Natural Gas Industry B, 2(2-3), 155-161. doi: https://doi.org/10.1016/j.ngib.2015.07.004

Huntley, D. J. & Baril, M. (1997). The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient Tl, 15(1), 11-13.

Jacobi, D. J., Gladkikh, M., LeCompte, B., Hursan, G., Mendez, F., Longo, J., Ong, S., Bratovich, M., Patton, G. L., & Shoemaker, P. (2008). Integrated petrophysical evaluation of shale gas reservoirs [Presentación de paper]. CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, Alberta, Canada, June 2008. doi: https://doi.org/10.2118/114925-MS

Kethireddy, N., Chen, H., & Heidari, Z. (2014). Quantifying the effect of kerogen on resistivity measurements in organic-rich mudrocks. Petrophysics, 55(02), 136-146.

Killeen, P. (1982). Gamma-ray logging and interpretation. In Fitch A. A. (Ed.) Developments in Geophysical Exploration Methods-3 (pp. 95–150). Springer.

Larionov, W. W. (1969). Method of natural radioactivity of rocks. In Nedra (Ed.) Borehole radiometry (pp. 74-129). Nedra, Moscow

Lewis, R., Ingraham, D., Pearcy, M., Williamson, J., Sawyer, W., & Frantz, J. (2004). New evaluation techniques for gas shale reservoirs [Presentación de paper]. Reservoir symposium, Schlumberger, Houston.

Lock, G. and Hoyer, W. (1971). Natural gamma-ray spectral logging. [Presentación de paper] SPWLA 12th Annual Logging Symposium, Dallas, Texas.

Lüning, S. & Kolonic, S. (2003). Uranium spectral gamma-ray response as a proxy for organic richness in black shales: Applicability and limitations. Journal of petroleum geology, 26(2), 153–174. doi: https://doi.org/10.1111/j.1747-5457.2003.tb00023.x

Mathis, G. L., Tittle, C., Rutledge, D., Mayer, R., & Ferguson, W. (1984). A spectral gamma ray (SGR) tool [Presentación de paper] SPWLA 25th Annual Logging Symposium, New Orleans, Louisiana.

North, C. P. and Boering, M. (1999). Spectral gamma-ray logging for facies discrimination in mixed fluvial-eolian successions: A cautionary tale. AAPG Bulletin, 83(1), 155–169. doi: https://doi.org/10.1306/00AA9A2A-1730-11D7-8645000102C1865D

Morys, M. (2020). Spectral Gamma Ray Downhole Logging Tool (U.S. Patent No. US 10,670,736 B2). Nabors Drilling Technologies USA, Inc., Houston, TX (US).

Morys, M. (2021). Spectral Gamma Ray Downhole Logging Tool (U.S. Patent No. US 11,119,226 B2). Nabors Drilling Technologies USA, Inc., Houston, TX (US).

Owen, J. D. (1966). A review of fundamental nuclear physics applied to gamma ray spectral logging. In The Log Analyst, 7(03).

Passey, Q., Creaney, S., Kulla, J., Moretti, F., & Stroud, J. (1990). A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74(12), 1777–1794. doi: https://doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D

Passey, Q. R., Bohacs, K., Esch, W. L., Klimentidis, R., and Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir–geologic and petrophysical characterization of unconventional shale-gas reservoirs [Presentación de paper] International Oil and Gas Conference and Exhibition in China, Beijing, China, June 2010. doi: https://doi.org/10.2118/131350-MS

Rhodes, D. & Mott, W. (1966). Quantitative interpretation of gamma-ray spectral logs. Geophysics, 31(2), 410-418. doi: https://doi.org/10.1190/1.1439785

Russell, W. L. (1945). Relation of radioactivity, organic content, and sedimentation. AAPG Bulletin, 29(10), 1470-1493. doi: https://doi.org/10.1306/3D933796-16B1-11D7-8645000102C1865D

Rutherford, E., & Soddy, F. (1902). LXIV. The cause and nature of radioactivity. —Part I. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(23), 569–585. doi: https://doi.org/10.1080/14786440209462881

Schmoker, J. W. (1979). Determination of organic content of Appalachian Devonian shales from formation-density logs: Geologic notes. AAPG Bulletin, 63(9), 1504-1509. doi: https://doi.org/10.1306/2F9185D1-16CE-11D7-8645000102C1865D

Schmoker, J. W. (1981). Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs. AAPG Bulletin, 65(7), 1285–1298. doi: https://doi.org/10.1306/03B5949A-16D1-11D7-8645000102C1865D

Schnyder, J., Ruffell, A., Deconinck, J.-F., and Baudin, F. (2006). Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Paleogeography, Palaeoclimatology, Palaeoecology, 229(4), 303–320. doi: https://doi.org/10.1016/j.palaeo.2005.06.027

Schön, J. H. (2015). Nuclear/Radioactive Properties. In Elsevier (Ed.) Physical properties of rocks: Fundamentals and principles of petrophysics (pp. 119 – 166). Elsevier.

Sen, S. K. (1959). Potassium content of natural plagioclases and the origin of antiperthites. The Journal of Geology, 67(5), 479–495. doi: https://doi.org/10.1086/626602

Serra, O. (1984). Natural gamma-ray spectrometry. In Elsevier (Ed.) Fundamentals of well-log interpretation, the acquisition of logging data (pp. 113 – 133). Elsevier Science.

Serra, O., Baldwin, J., & Quirein, J. (1980). Theory, interpretation, and practical applications of natural gamma ray spectroscopy [Presentación de paper] SPWLA 21st Annual Logging Symposium, Lafayette, Louisiana.

Steiner, S., Ahsan, S. A., Raina, I., Dasgupta, S., & Lis, G. P. (2016). Interpreting total organic carbon TOC in source rock oil plays [Presentación de paper] Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE. doi: https://doi.org/10.2118/183050-MS

Stieber, S. (1970). Pulsed neutron capture log evaluation-Louisiana Gulf coast [Presentación de paper] Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, Texas. doi: https://doi.org/10.2118/2961-MS

Swanson, V. E. (1960). Oil yield and uranium content of black shales. (Technical report) Geological Survey, Washington, DC (USA).

Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1), 35-39. Doi: https://doi.org/10.1177/8756479390006001

Tittman, J. (1966). Radiation logging: Physical Principles. Petroleum Engineering Conference. University of Kansas. In Lawson B. L. & Hoyer G. R. (Eds.) Gamma Ray, Neutron and Density Logging L. I. SPWLA

Van der Boor, M. (2014). Modelling the spectral gamma-ray log: The influence of provenance and selective transport [Master’s thesis], Delft University of Technology.

Wang, J., Gu, D., Guo, W., Zhang, H., & Yang, D. (2019). Determination of total organic carbon content in shale formations with regression analysis. Journal of Energy Resources Technology, 141(1). doi: https://doi.org/10.1115/1.4040755

Wang, P., Chen, Z., Pang, X., Hu, K., Sun, M., and Chen, X. (2016). Revised models for determining TOC in shale play: Example from Devonian Duvernay shale, western Canada sedimentary basin. Marine and Petroleum Geology, 70, 304-319. doi: https://doi.org/10.1016/j.marpetgeo.2015.11.023

Yuguchi, T., Yagi, K., Sasao, E., and Nishiyama, T. (2021). K-ar geochronology for hydrothermal k-feldspar within plagioclase in a granitic pluton: Constraints on timing and thermal condition for hydrothermal alteration. Heliyon, 7(4), e06750. doi: https://doi.org/10.1016/j.heliyon.2021.e06750

Artículos más leídos del mismo autor/a

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
2,4 promedio

##plugins.generic.pfl.reviewerProfiles##  N/D

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
N/D
32% con financiadores
##plugins.generic.pfl.competingInterests## 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
Artículos aceptados: 2%
33% aceptado
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

Indexado: {$indexList}

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
Geofísica Internacional