Holocene landscape transformation of lake basins of Central Mexico based on volcanic soil development: a first exploratory study from micromorphology to magnetic mineralogy

Contenido principal del artículo

Daisy Valera Fernández
Beatriz Ortega Guerrero
Elizabeth Solleiro Rebolledo
Cecilia Irene Caballero Miranda

Resumen

Los óxidos de hierro se pueden producir en los suelos debido a la meteorización química/pedogénesis y son relacionables con las condiciones climáticas y también con alteraciones antrópicas. En esta investigación, se analizaron cuatro perfiles de suelo (TAC1, TAC2, TAC3 y LV1) en áreas con condiciones climáticas diferentes en dos cuencas lacustres de ambientes volcánicos: la Alberca de Tacámbaro (TAC) en el estado de Michoacán, con un clima cálido-subhúmedo y el Lago Verde (LV) en el estado de Veracruz con un clima cálido-húmedo. El estudio realizado ha tenido como objetivo generar información preliminar sobre la transformación del paisaje en las dos cuencas lacustres atendiendo a los procesos pedogénicos específicos del sitio en una escala de tiempo centenaria-milenaria y el posible impacto de actividades antropogénicas recientes en los suelos de estas cuencas lacustres. Se analizaron las diferencias en el grado de pedogénesis en los suelos a partir de estudios de mineralogía magnética que se complementaron y compararon con estudios de micromorfología, mineralogía en roca total e identificación de arcillas, color y textura de los horizontes del suelo. Se obtuvieron también dataciones mediante 14C en materia orgánica de varios de los horizontes para, junto a los rasgos micromorfológicos, interpretar los posibles cambios del paisaje en estas cuencas debido al impacto antrópico. Se identificó que en los suelos de TAC y LV los procesos pedogenéticos no fueron suficientes para eliminar la señal magnética de los minerales volcánicos. La mineralogía magnética en los perfiles está dominada por minerales ferrimagnéticos de baja coercitividad; magnetita y titanomagnetita en el caso de los perfiles de TAC y también maghemita en el caso del perfil LV1. Las características del perfil LV1, como la presencia de un horizonte tipo Bt, iluviación de arcilla y presencia de óxidos de Fe, sugieren un avance de la pedogénesis mayor que en los perfiles de TAC. Tanto en los perfiles de TAC como en LV se observó el retrabajo del material edáfico y varios ciclos de formación de suelo relacionables con el posible impacto antrópico. En los perfiles TAC1 y TAC2 lo anterior quedó evidenciado por la presencia de fragmentos de carbón y las edades de los horizontes BC de 1955 cal AD, mientras que en el perfil TAC3 se observaron tres ciclos de sedimentación y formación de suelo. En el perfil LV1, a una profundidad de 90 cm, se obtuvo una edad de 2007 cal AD para el horizonte 2Cb1, y el retrabajo del material edáfico fue observable por la presencia de fragmentos de suelo arcilloso y minerales frescos en el suelo moderno (Ah-AB-Bt). Todos los datos obtenidos también serán útiles para establecer la relación suelos-sedimentos para estudios paleoclimáticos en sedimentos lacustres de la región central de México.

Detalles del artículo

Cómo citar
Valera Fernández, D., Ortega Guerrero, B., Solleiro Rebolledo, E., & Caballero Miranda, C. I. (2024). Holocene landscape transformation of lake basins of Central Mexico based on volcanic soil development: a first exploratory study from micromorphology to magnetic mineralogy. Geofísica Internacional, 63(4), 1315–1339. https://doi.org/10.22201/igeof.2954436xe.2024.63.4.1729
Sección
Sección especial

Citas

Alatorre E. (1996). Etnomicología en la Sierra de Santa Marta. CONABIO, Xalapa, Veracruz.

Anaya, C.A., Mendoza, M., Rivera, M., Páez, R. and Olivares-Martínez, L.D. (2016). Organic carbon content and water retention in soils of a cloud forest in Michoacán, México. Agrociencia, 50(2), pp.251-269.

Balsam, W., Ji, J., Chen, J. (2004). Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters, 223, 335-348. doi: https://doi.org/10.1016/j.epsl.2004.04.023 DOI: https://doi.org/10.1016/j.epsl.2004.04.023

Barrón, V. and Torrent, J. (1986). Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. Journal of Soil Science, 37(4), 499-510. doi: https://doi.org/10.1111/j.1365-2389.1986.tb00382.x DOI: https://doi.org/10.1111/j.1365-2389.1986.tb00382.x

Beck-Broichsitter, S., Fleige, H., Goebel, M.O., Dörner, J., Bachmann, J., Horn, R., (2016). Shrinkage potential and pore shrinkage capacity of differently developed volcanic ash soils under pastures in southern Chile. Journal of Plant Nutrition and Soil Science, 179, 799-808. DOI: https://doi.org/10.1002/jpln.201600110

Bernhard, N., Moskwa, L. M., Schmidt, K., Oeser, R. A., Aburto, F., Bader, M. Y., ... & Kühn, P. (2018). Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile. Catena, 170, 335-355. doi: https://doi.org/10.1016/j.catena.2018.06.018 DOI: https://doi.org/10.1016/j.catena.2018.06.018

Birkeland, P. W. (1984). Soils and geomorphology. Oxford university press.

Borruel-Abadía V., Gómez-Paccard M., Larrasoaña J.C., Rico M., Valero-Garcés B, Moreno A., Jambrina-Enríquez M., Soto R. (2015). Late Pleistocene to Holocene palaeoenvironmental variability in the north-west Spanish mountains: insights from a source-to-sink environmental magnetic study of Lake Sanabria. Journal of Quaternary Science, 30(3), 222-234. doi: https://doi.org/10.1002/jqs.2773 DOI: https://doi.org/10.1002/jqs.2773

Bourne, M.D., Feinberg, J.M., Strauss, B.E., Hardt, B., Cheng, H., Rowe, H.D., Springer, G. and Edwards, R.L. (2015). Long-term changes in precipitation recorded by magnetic minerals in speleothems. Geology, 43(7), 595-598. doi: https://doi.org/10.1130/G36695.1 DOI: https://doi.org/10.1130/G36695.1

Bradbury, J.P. (1989). Late Quaternary lacustrine paleoenvironments in the Cuenca de Mexico. Quaternary Science Reviews, 8(1), 75-100. doi: https://doi.org/10.1016/0277-3791(89)90022-X DOI: https://doi.org/10.1016/0277-3791(89)90022-X

Buytaert, W., Wyseure, G., De Bievre, B., Deckers, J. (2005). The effect of land-use changes on the hydrological behaviour of histic Andosols in south Ecuador. Hydrological Processes 19 (20), 3985-3997. doi: https://doi.org/10.1002/hyp.5867 DOI: https://doi.org/10.1002/hyp.5867

Caballero, M., Vázquez, G., Lozano-García, S., Rodríguez, A., Sosa-Nájera, S., Ruiz-Fernández, A.C. and Ortega, B. (2006). Present limnological conditions and recent (ca. 340 yr) paleolimnology of a tropical lake in the Sierra de Los Tuxtlas, Eastern Mexico. Journal of Paleolimnology, 35(1), 83-97. doi: https://doi.org/10.1007/s10933-005-7427-5 DOI: https://doi.org/10.1007/s10933-005-7427-5

Caballero, M., Vázquez, G., Ortega, B., Favila, M.E. and Lozano-García, S. (2016). Responses to a warming trend and “El Niño” events in a tropical lake in western México. Aquatic Sciences, 78(3), 591-604. doi: https://doi.org/10.1007/s00027-015-0444-1 DOI: https://doi.org/10.1007/s00027-015-0444-1

Candra, I.N., Gerzabek, M.H., Ottner, F., Wriessnig, K., Tintner, J., Schmidt, G., Rechberger, M.V., Rampazzo, N. and Zehetner, F. (2021). Soil development and mineral transformations along a one‐million‐year chronosequence on the Galápagos Islands. Soil Science Society of America Journal, 85(6), 2077-2099. doi: https://doi.org/10.1002/saj2.20317 DOI: https://doi.org/10.1002/saj2.20317

Castillo-Campos, G. and Laborde, J. (2004). La vegetación. En A. S. Guevara, J. Laborde (Eds.), Los Tuxtlas. El paisaje de la sierra, (pp.231-265). Instituto de Ecología

Chen, T., Xu, H., Xie, Q., Chen, J., Ji, J. and Lu, H. (2005). Characteristics and genesis of maghemite in Chinese loess and paleosols: a mechanism for magnetic susceptibility enhancement in paleosols. Earth and Planetary Science Letters, 240(3-4), 790-802. doi: https://doi.org/10.1016/j.epsl.2005.09.026 DOI: https://doi.org/10.1016/j.epsl.2005.09.026

Clement, B. M., Javier, J., Sah, J. P., & Ross, M. S. (2011). The effects of wildfires on the magnetic properties of soils in the Everglades. Earth Surface Processes and Landforms, 36(4), 460-466. doi: https://doi.org/10.1002/esp.2060 DOI: https://doi.org/10.1002/esp.2060

Day, R., Fuller, M. and Schmidt, V.A. (1977). Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and planetary interiors, 13(4), 260-267. doi: https://doi.org/10.1016/0031-9201(77)90108-X DOI: https://doi.org/10.1016/0031-9201(77)90108-X

Dearing J.A. Dann R.J.L. Hay K. Lees J.A. Loveland P.J. Maher B.A. O'Grady K. (1996). Frequency-dependent susceptibility measurements of environmental materials, Geophysical Journal International, 124(1), 228–240. doi: https://doi.org/10.1111/j.1365-246X.1996.tb06366.x DOI: https://doi.org/10.1111/j.1365-246X.1996.tb06366.x

Dearing, J., Lees, J., White, C. (1995). Mineral magnetic properties of acid gleyed soils under oak and Corsican Pine. Geoderma, 68, 309-319. doi: https://doi.org/10.1016/0016-7061(95)00040-1 DOI: https://doi.org/10.1016/0016-7061(95)00040-1

Dearing, J.A., Maher, B.A. and Oldfield, F., 2020. Geomorphological linkages between soils and sediments: the role of magnetic measurements. En A. K.S. Richards, R.R. Arnett, S. Ellis (Eds.), Geomorphology and soils (pp. 245-266). Routledge. DOI: https://doi.org/10.4324/9780429320781-13

Delvaux, B., Herbillon, A.J. and Vielvoye, L. (1989). Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon. Taxonomic, mineralogical, and agronomic implications. Geoderma, 45(3-4), 375-388. doi: https://doi.org/10.1016/0016-7061(89)90017-7 DOI: https://doi.org/10.1016/0016-7061(89)90017-7

Díaz-Ortega, J., Solleiro-Rebolledo, E., & Sedov, S. (2011). Spatial arrangement of soil mantle in Glacis de Buenavista, Mexico as a product and record of landscape evolution. Geomorphology, 135(3-4), 248-261. doi: https://doi.org/10.1016/j.geomorph.2011.02.012 DOI: https://doi.org/10.1016/j.geomorph.2011.02.012

Dirzo R., González S.E. and Vogt R.C. (1997). Introducción general. En A. González S.E., Dirzo R. and Vogt R.C. (Eds.), Historia Natural de Los Tuxtlas. (pp. 3-6). Universidad Nacional Autónoma de México, Mexico.

Dirzo, R., Garcia, M.C. (1992). Rates of deforestation in los-Tuxtlas, a neotropical area in southeast Mexico. Conservation Biology, 6(1), 84-90. doi: https://doi.org/10.1046/j.1523-1739.1992.610084.x DOI: https://doi.org/10.1046/j.1523-1739.1992.610084.x

Dixon, J. B. (1989). Kaolin and serpentine group minerals. Minerals in soil environments, 1, 467-525. doi: https://doi.org/10.2136/sssabookser1.2ed.c10 DOI: https://doi.org/10.2136/sssabookser1.2ed.c10

Dixon, J. B., & White, G. N. (2002). Manganese oxides. Soil mineralogy with environmental applications, 7, 367-388. doi: https://doi.org/10.2136/sssabookser7.c11 DOI: https://doi.org/10.2136/sssabookser7.c11

Dörner, J., Dec, D., Peng, X., Horn, R. (2009). Change of shrinkage behaviour of an Andisol in southern Chile. Effects of land use and wetting/drying cycles. Soil and Tillage Research, 106(1), 45-56. doi: https://doi.org/10.1016/j.still.2009.09.013 DOI: https://doi.org/10.1016/j.still.2009.09.013

Dunlop, D.J. (2002). Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research: Solid Earth, 107(B3), EPM-4. doi: https://doi.org/10.1029/2001JB000487 DOI: https://doi.org/10.1029/2001JB000486

Egli, R. (2004). Characterizing individual rock magnetic components by analysis of remanence curves.: 2. Fundamental properties of coercivity distributions. Physics and Chemistry of the Earth, Parts A/B/C, 29(13-14), 851-867. doi: https://doi.org/10.1016/j.pce.2004.04.001 DOI: https://doi.org/10.1016/S1474-7065(04)00129-9

Espíndola, J. M., Zamora-Camacho, A., Godinez, M. L., Schaaf, P., & Rodríguez, S. R. (2010). The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico. Journal of Volcanology and Geothermal Research, 197(1-4), 188-208. doi: https://doi.org/10.1016/j.jvolgeores.2009.08.005 DOI: https://doi.org/10.1016/j.jvolgeores.2009.08.005

Evans, M. and Heller, F. (2003). Environmental magnetism: principles and applications of enviromagnetics. Elsevier.

Fedo, C.M., Wayne Nesbitt, H. and Young, G.M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921-924. doi: https://doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

Ferrari, L. (2004). Slab detachment control on the mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32(1), 77-80. doi: https://doi.org/10.1130/G19887.1 DOI: https://doi.org/10.1130/G19887.1

Ferrari, L., Orozco-Esquivel, T., Manea, V. and Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122-149. doi: https://doi.org/10.1016/j.tecto.2011.09.018 DOI: https://doi.org/10.1016/j.tecto.2011.09.018

Fisher, C.T., Pollard, H.P., Israde, I.A., Garduño, M.V., Banerjee, S. (2003). A reexamination of human-induced environmental change within the Lake Patzcuaro basin, Michoacan, Mexico. Anthropology, 100(8), 4957–4962. doi: https://doi.org/10.1073/pnas.0630493100 DOI: https://doi.org/10.1073/pnas.0630493100

FIZ Karlsruhe. (2024) Inorganic Crystal Structure Database. [Base de Datos]. FIZ Karlsruhe. https://icsd.fiz-karlsruhe.de/

Gee G W, Or D. 2002. Particle size analysis. En A. Dane J, Topp C (Eds.), Methods of Soil Analysis. (pp. 255–293), Soil Science Society of America, Madison. DOI: https://doi.org/10.2136/sssabookser5.4.c12

Geiss, C.E. (1999). The development of rock magnetic proxies for paleoclimate reconstruction. University of Minnesota.

Geiss, C.E., Egli, R. and Zanner, C.W. (2008). Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research: Solid Earth, 113(B11). doi: https://doi.org/10.1029/2008JB005669 DOI: https://doi.org/10.1029/2008JB005669

Geiss, C.E., Zanner, C.W., Banerjee, S.K. and Joanna, M. (2004). Signature of magnetic enhancement in a loessic soil in Nebraska, United States of America. Earth and Planetary Science Letters, 228(3-4), 355-367. doi: https://doi.org/10.1016/j.epsl.2004.10.011 DOI: https://doi.org/10.1016/j.epsl.2004.10.011

Geissert, K.D. and Enríquez, E. (2004). La geomorfología. En A. S. Guevara, J. Laborde (Eds.), Los Tuxtlas. El paisaje de la sierra, (pp. 159-179). Instituto de Ecología

Gobierno del Estado (G.D.E) Michoacán. (2007). Estrategia para la conservación y uso sustentable de la diversidad biológica del Estado de Michoacán. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad

Gómez-Tuena, A., Langmuir, C.H., Goldstein, S.L., Straub, S.M. and Ortega-Gutierrez, F. (2007a). Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. Journal of Petrology, 48(3), 537-562. doi: https://doi.org/10.1093/petrology/egl071 DOI: https://doi.org/10.1093/petrology/egl071

Gómez-Tuena, A., Mori, L., & Straub, S. M. (2018). Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-science reviews, 183, 153-181. doi: https://doi.org/10.1016/j.earscirev.2016.12.006 DOI: https://doi.org/10.1016/j.earscirev.2016.12.006

Gómez-Tuena, A., Orozco-Esquivel, M.T. and Ferrari, L. (2007b). Igneous petrogenesis of the Trans-Mexican volcanic belt. En A. Susana A. Alaniz-Álvarez; Ángel F. Nieto-Samaniego. (Eds.), Geology of México: Celebrating the Centenary of the Geological Society of México (pp. 129-181) Geological Society of America. DOI: https://doi.org/10.1130/2007.2422(05)

Gracheva, R.G., Targulian, V.O. and Zamotaev, I.V. (2001). Time-dependent factors of soil and weathering mantle diversity in the humid tropics and subtropics: a concept of soil self-development and denudation. Quaternary International, 78(1), 3-10. doi: https://doi.org/10.1016/S1040-6182(00)00110-5 DOI: https://doi.org/10.1016/S1040-6182(00)00110-5

Grimley, D., Arruda, N. (2007). Observations of magnetite dissolution in poorly drained soils. Soil Science, 172, 968-982. doi: https://doi.org/10.1097/ss.0b013e3181586b77 DOI: https://doi.org/10.1097/ss.0b013e3181586b77

Guilbaud, M.N., Siebe, C., Layer, P. and Salinas, S. (2012). Reconstruction of the volcanic history of the Tacambaro-Puruarán area (Michoacán, México) reveals a high frequency of Holocene monogenetic eruptions. Bulletin of volcanology, 74(5), 1187-1211. doi: https://doi.org/10.1007/s00445-012-0594-0 DOI: https://doi.org/10.1007/s00445-012-0594-0

Hasenaka, T. and Carmichael, I.S. (1987). The cinder cones of Michoacan-Guanajuato, central Mexico: petrology and chemistry. Journal of Petrology, 28(2), 241-269. doi: https://doi.org/10.1093/petrology/28.2.241 DOI: https://doi.org/10.1093/petrology/28.2.241

Hatfield, R.G. and Maher, B.A., 2009. Fingerprinting upland sediment sources: particle size‐specific magnetic linkages between soils, lake sediments and suspended sediments. Earth surface processes and landforms, 34(10), 1359-1373. doi: https://doi.org/10.1002/esp.1824 DOI: https://doi.org/10.1002/esp.1824

Hua, Q., Barbetti, M. and Rakowski, A.Z. (2013). Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55(4), 2059-2072. doi: https://doi.org/10.2458/azu_js_rc.v55i2.16177 DOI: https://doi.org/10.2458/azu_js_rc.v55i2.16177

Huffman, E.J. and Duce, R.A. (1977). Alkali and alkaline earth metal chemistry of marine aerosols generated in the laboratory with natural sea waters. Atmospheric Environment (1967), 11(4), 367-372. doi: https://doi.org/10.1016/0004-6981(77)90166-4 DOI: https://doi.org/10.1016/0004-6981(77)90166-4

Hyland, E.G., Sheldon, N.D., Van der Voo, R., Badgley, C. and Abrajevitch, A. (2015). A new paleoprecipitation proxy based on soil magnetic properties: Implications for expanding paleoclimate reconstructions. GSA, Bulletin, 127(7-8), 975-981. doi: https://doi.org/10.1130/B31207.1 DOI: https://doi.org/10.1130/B31207.1

Instituto Nacional de Estadística, Geografía e Informática (2004). Información Nacional sobre Perfiles de Suelos, versión 1.2. Aguascalientes, México. Instituto Nacional de Estadística, Geografía e Informática

International Center for Diffraction Data (ICDD). PDF-5+ [Base de Datos]. International Center for Diffraction Data. https://www.icdd.com/pdf-5/

IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014. International soil classification system for naming soil and creating legends for soil maps. Food and Agriculture Organization of the United Nations, Rome.

Jahn, R., & Stahr, K. (1996). Development of soils and site qualities on basic volcanoclastics with special reference to the semiarid environment of Lanzarote, Canary Islands, Spain. Revista Mexicana de Ciencias Geológicas, 13(1), 7.

Ji, J., Chen, J., Balsam, W., Lu, H., Sun, Y., Xu, H. (2004). High resolution hematite/ goethite records from Chinese loess sequences for the last glacial-interglacial cycle: rapid climatic response of the East Asian Monsoon to the tropical Pacific. Geophysical Research Letters, 31(3). doi: https://doi.org/10.1029/2003GL018975 DOI: https://doi.org/10.1029/2003GL018975

Jordanova, D., Petrovsky, E., Jordanova, N., Evlogiev, J. and Butchvarova, V. (1997). Rock magnetic properties of recent soils from northeastern Bulgaria. Geophysical Journal International, 128(2), 474-488. doi: https://doi.org/10.1111/j.1365-246X.1997.tb01569.x DOI: https://doi.org/10.1111/j.1365-246X.1997.tb01569.x

Jordanova, N. (2016). Soil magnetism: Applications in pedology, environmental science and agriculture. Academic press. Jordanova, N., Jordanova, D., Mokreva, A., Ishlyamski, D. and Georgieva, B., 2019. Temporal changes in magnetic signal of burnt soils–A compelling three years pilot study. Science of the Total Environment, 669, 729-738. doi: https://doi.org/10.1016/j.scitotenv.2019.03.173 DOI: https://doi.org/10.1016/j.scitotenv.2019.03.173

Jordanova, N., Jordanova, D., & Barrón, V. (2019). Wildfire severity: Environmental effects revealed by soil magnetic properties. Land degradation & development, 30(18), 2226-2242. doi: https://doi.org/10.1002/ldr.3411 DOI: https://doi.org/10.1002/ldr.3411

Jordanova, N., Jordanova, D., Kostadinova‐Avramova, M., Lesigyarski, D., Nikolov, V., Katsarov, G., & Bacvarov, K. (2018). A mineral magnetic approach to determine paleo‐firing temperatures in the Neolithic settlement site of Mursalevo‐Deveboaz (SW Bulgaria). Journal of Geophysical Research: Solid Earth, 123(4), 2522-2538. doi: https://doi.org/10.1002/2017JB015190 DOI: https://doi.org/10.1002/2017JB015190

Kletetschka, G. and Banerjee, S.K. (1995). Magnetic stratigraphy of Chinese loess as a record of natural fires. Geophysical Research Letters, 22(11), 1341-1343. doi: https://doi.org/10.1029/95GL01324 DOI: https://doi.org/10.1029/95GL01324

Larrea, P., Siebe, C., Juárez-Arriaga, E., Salinas, S., Ibarra, H. and Böhnel, H. (2019). The~ AD 500–700 (Late Classic) El Astillero and El Pedregal volcanoes (Michoacán, Mexico): a new monogenetic cluster in the making? Bulletin of Volcanology, 81(10), 1-19. doi: https://doi.org/10.1007/s00445-019-1318-5 DOI: https://doi.org/10.1007/s00445-019-1318-5

Le Borgne, E. (1960). Influence du feu sur les propriétés magnétiques du sol et sur celles du schiste et du granite. Annales de Géophysique, 16, 159

Lindquist, A.K., Feinberg, J.M. and Waters, M.R. (2011). Rock magnetic properties of a soil developed on an alluvial deposit at Buttermilk Creek, Texas, USA. Geochemistry, Geophysics, Geosystems, 12(12). doi: https://doi.org/10.1029/2011GC003848 DOI: https://doi.org/10.1029/2011GC003848

Liu, Q., Deng, Ch., Torrent, J., Zhu, R. (2007). Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews, 27, 368-385. doi: https://doi.org/10.1016/j.quascirev.2006.08.004 DOI: https://doi.org/10.1016/j.quascirev.2006.08.004

Lozano, R. and Bernal, J.P. (2005). Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas, 22(3), 329-344.

Lozano-Garcı́a, M.S., Ortega-Guerrero, B., Caballero-Miranda, M. and Urrutia-Fucugauchi, J. (1993). Late Pleistocene and Holocene paleoenvironments of Chalco lake, central Mexico. Quaternary Research, 40(3), 332-342. doi: https://doi.org/10.1006/qres.1993.1086 DOI: https://doi.org/10.1006/qres.1993.1086

Maher, B. (1988). Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal international, 94(1), 83-96. doi: https://doi.org/10.1111/j.1365-246X.1988.tb03429.x DOI: https://doi.org/10.1111/j.1365-246X.1988.tb03429.x

Maher, B.A., Alekseev, A. and Alekseeva, T. (2002). Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy. Quaternary Science Reviews, 21(14-15), 1571-1576. doi: https://doi.org/10.1016/S0277-3791(02)00022-7 DOI: https://doi.org/10.1016/S0277-3791(02)00022-7

Maxbauer, D.P., Feinberg, J.M. and Fox, D.L. (2016a). Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges. Earth-Science Reviews, 155, 28-48. doi: https://doi.org/10.1016/j.earscirev.2016.01.014 DOI: https://doi.org/10.1016/j.earscirev.2016.01.014

Maxbauer, D.P., Feinberg, J.M. and Fox, D.L. (2016b). MAX UnMix: A web application for unmixing magnetic coercivity distributions. Computers & Geosciences, 95, 140-145. doi: https://doi.org/10.1016/j.cageo.2016.07.009 DOI: https://doi.org/10.1016/j.cageo.2016.07.009

Montero, E., Vázquez, G., Caballero, M., Favila, M. E., & Martínez-Jerónimo, F. (2021). Seasonal variation of Microcystis aeruginosa and factors related to blooms in a deep warm monomictic lake in Mexico. Journal of Limnology, 80(2). doi: https://doi.org/10.4081/jlimnol.2021.2013 DOI: https://doi.org/10.4081/jlimnol.2021.2013

Morales, R. H., Ortega, M. R., Sánchez, J. D., Alvarado, R., & Aguilera, M. S. (2011). Distribución estacional del fitoplancton en un lago cálido monomíctico en Michoacán, México. Biológicas Revista de la DES Ciencias Biológico Agropecuarias Universidad Michoacana de San Nicolás de Hidalgo, 13(2), 21-28.

Nesbitt, H. and Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. doi: https://doi.org/10.1038/299715a0 DOI: https://doi.org/10.1038/299715a0

Nieuwenhuyse, A., Jongmans, A.G. and Van Breemen, N. (1993). Andisol formation in a Holocene beach ridge plain under the humid tropical climate of the Atlantic coast of Costa Rica. Geoderma, 57(4), 423-442. doi: https://doi.org/10.1016/0016-7061(93)90053-N DOI: https://doi.org/10.1016/0016-7061(93)90053-N

Oldfield, F., & Crowther, J. (2007). Establishing fire incidence in temperate soils using magnetic measurements. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4), 362-369. doi: https://doi.org/10.1016/j.palaeo.2007.02.007 DOI: https://doi.org/10.1016/j.palaeo.2007.02.007

Opdyke, M.D. and Channell, J.E. (1996). Magnetic stratigraphy. Academic press.

Orozco-Ramírez, Q., Astier, M., Barrasa, S. (2017). Agricultural Land Use Change after NAFTA in Central West Mexico. Land, 6(4), 66. doi: https://doi.org/10.3390/land6040066 DOI: https://doi.org/10.3390/land6040066

Ortega, B., Caballero, M., Lozano, S., Vilaclara, G. and Rodríguez, A. (2006). Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East–Central Mexico. Earth and Planetary Science Letters, 250(3-4), 444-458. doi: https://doi.org/10.1016/j.epsl.2006.08.020

Ortega, B., Caballero, M., Lozano, S., Vilaclara, G. and Rodríguez, A. (2006). Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East–Central Mexico. Earth and Planetary Science Letters, 250(3-4), 444-458. doi: https://doi.org/10.1016/j.epsl.2006.08.020 DOI: https://doi.org/10.1016/j.epsl.2006.08.020

Ortega, B., Vázquez, G., Caballero, M., Israde, I., Lozano-García, S., Schaaf, P., Torres, E. (2010). Late Pleistocene: Holocene record of environmental changes in Lake Zirahuen, Central Mexico. Journal of Paleolimnology, 44(3), 745-760. doi: https://doi.org/10.1007/s10933-010-9449-x DOI: https://doi.org/10.1007/s10933-010-9449-x

Ortega‐Guerrero, B., Caballero, M. and Israde‐Alcántara, I. (2021). The Holocene record of Alberca de Tacambaro, a tropical lake in western Mexico: evidence of orbital and millennial‐scale climatic variability. Journal of Quaternary Science, 36(4), 649-663. doi: https://doi.org/10.1002/jqs.3316 DOI: https://doi.org/10.1002/jqs.3316

Osorio-Ocampo, S., Macías, J.L., Pola, A., Cardona-Melchor, S., Sosa-Ceballos, G., Garduño-Monroy, V.H., Layer, P.W., García-Sánchez, L., Perton, M. and Benowitz, J. (2018). The eruptive history of the Pátzcuaro Lake area in the Michoacán Guanajuato Volcanic Field, central México: Field mapping, C-14 and 40Ar/39Ar geochronology. Journal of Volcanology and Geothermal Research, 358, 307-328. doi: https://doi.org/10.1016/j.jvolgeores.2018.06.003 DOI: https://doi.org/10.1016/j.jvolgeores.2018.06.003

Parfitt, R.L. and Saigusa, M. (1985). Allophane and Humus-Aluminum in Spodosols and Andepts Formed from the same Volcanic Ash Beds in New Zealand 1. Soil Science, 139(2), 149-155. DOI: https://doi.org/10.1097/00010694-198502000-00008

Perret, S., Dorel, M. (1999). Relationships between land use, fertility and Andisol behaviour: Examples from volcanic islands. Soil Use and Management 15(3), 144-149. DOI: https://doi.org/10.1111/j.1475-2743.1999.tb00080.x

Peters, C., & Dekkers, M. J. (2003). Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, Parts A/B/C, 28(16-19), 659-667. DOI: https://doi.org/10.1016/S1474-7065(03)00120-7

Ramsey, C.B. (2008). Deposition models for chronological records. Quaternary Science Reviews, 27(1-2), 42-60. doi: https://doi.org/10.1016/j.quascirev.2007.01.019 DOI: https://doi.org/10.1016/j.quascirev.2007.01.019

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Brown, D.M., Buck, C.E., Edwards, R.L., Friedrich, M. and Grootes, P.M. (2013). Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon, 55(4), 1923-1945. doi: https://doi.org/10.2458/azu_js_rc.55.16955 DOI: https://doi.org/10.2458/azu_js_rc.55.16955

Rivas Ortiz, J.F., Ortega Guerrero, B., Solleiro Rebolledo, E., Sedov, S. and Sánchez Pérez, S. (2012). Mineralogía magnética de suelos volcánicos en una toposecuencia del valle de Teotihuacán. Boletín de la Sociedad Geológica Mexicana, 64(1), 1-20. DOI: https://doi.org/10.18268/BSGM2012v64n1a1

Rivas, J., Ortega, B., Sedov, S., Solleiro, E., Sychera, S. (2006). Rock magnetism and pedogenetic processes in Luvisol profiles: Examples from Central Russia and Central Mexico. Quaternary International, 156–157, 212–223. Doi: https://doi.org/10.1016/j.quaint.2006.05.007 DOI: https://doi.org/10.1016/j.quaint.2006.05.007

Rodríguez-Elizarrarás, S.R., Morales-Barrera, W.V., Pompa-Mera, V., Siebe, C., Benowitz, J., Layer, P.W., Lozano-Santacruz, R. and Girón, P. (2023). Geochemistry and 40Ar/39Ar dating of the Sierra de Santa Marta in the tectonically controversial Los Tuxtlas Volcanic Complex (Veracruz, Mexico). Journal of South American Earth Sciences, 124, 104250. doi: https://doi.org/10.1016/j.jsames.2023.104250 DOI: https://doi.org/10.1016/j.jsames.2023.104250

Rossel, R.V., Minasny, B., Roudier, P. and Mcbratney, A.B. (2006). Colour space models for soil science. Geoderma, 133(3-4), 320-337. doi: https://doi.org/10.1016/j.geoderma.2005.07.017 DOI: https://doi.org/10.1016/j.geoderma.2005.07.017

Ruan-Soto, F., Garibay-Orijel, R. and Cifuentes, J. (2004). Conocimiento micológico tradicional en la planicie costera del Golfo de México. Scientia Fungorum, (19), 57-70. doi: https://doi.org/10.33885/sf.2004.3.926

Ruxton B. P. (1986). Measures of the degree of chemical weathering of rocks. The Journal of Geology 76(5) 518-27. DOI: https://doi.org/10.1086/627357

Ryan, P.C. and Huertas, F.J. (2009). The temporal evolution of pedogenic Fe–smectite to Fe–kaolin via interstratified kaolin–smectite in a moist tropical soil chronosequence. Geoderma, 151(1-2), 1-15. https://doi.org/10.1016/j.geoderma.2009.03.010 DOI: https://doi.org/10.1016/j.geoderma.2009.03.010

Rzedowski, J. (1994). Vegetación de México (6 ed.). Limusa Noriega Editores, México.

Salazar-Jaramillo, S., Śliwiński, M.G., Hertwig, A.T., Garzón, C.C., Gómez, C.F., Bonilla, G.E. and Guerrero, J. (2022). Changes in rainfall seasonality inferred from weathering and pedogenic trends in mid-Miocene paleosols of La Tatacoa, Colombia. Global and Planetary Change, 208, 103711. doi: https://doi.org/10.1016/j.gloplacha.2021.103711 DOI: https://doi.org/10.1016/j.gloplacha.2021.103711

Sedov, S.N., Solleiro-Rebolledo, E. and Gama-Castro, J.E. (2003). Andosol to Luvisol evolution in Central Mexico: timing, mechanisms and environmental setting. Catena, 54(3), 495-513. doi: https://doi.org/10.1016/S0341-8162(03)00123-1 DOI: https://doi.org/10.1016/S0341-8162(03)00123-1

Shoji, S., Dahlgren, R. and Nanzyo, M. (1993). Genesis of volcanic ash soils. En A. S. Shoji, M. Nanzyo, R. Dahlgren (Eds.), Developments in soil science (pp. 37-71). Elsevier. DOI: https://doi.org/10.1016/S0166-2481(08)70264-2

Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez, L. and Zawisza, E. (2017). Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and environmental gradients. Boletín de la Sociedad Geológica Mexicana, 69(2), 313-370. doi: https://doi.org/10.18268/bsgm2017v69n2a3 DOI: https://doi.org/10.18268/BSGM2017v69n2a3

Stoops, G. (2021). Guidelines for analysis and description of soil and regolith thin sections. John Wiley & Sons. DOI: https://doi.org/10.1002/9780891189763

Ugolini, F.C. and Dahlgren, R.A. (2002). Soil development in volcanic ash. Global Environmental Research-English Edition, 6(2), 69-82.

van Velzen, A.J. and Dekkers, M.J. (1999). Low-temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters. Studia geophysica et geodaetica, 43(4), 357-375. doi: https://doi.org/10.1023/A:1023278901491 DOI: https://doi.org/10.1023/A:1023278901491

Vázquez, G., Favila, M.E., Madrigal, R., Del Olmo, C.M., Baltanás, A. and Bravo, M.A. (2004). Limnology of crater lakes in Los Tuxtlas, Mexico. Hydrobiologia, 523(1), 59-70. doi: https://doi.org/10.1023/B:HYDR.0000033095.47028.51 DOI: https://doi.org/10.1023/B:HYDR.0000033095.47028.51

Verma, S.P., Torres-Sánchez, D., Velasco-Tapia, F., Subramanyam, K.S.V., Manikyamba, C. and Bhutani, R. (2016). Geochemistry and petrogenesis of extension-related magmas close to the volcanic front of the central part of the Trans-Mexican Volcanic Belt. Journal of South American Earth Sciences, 72, 126-136. https://doi.org/10.1016/j.jsames.2016.08.006 DOI: https://doi.org/10.1016/j.jsames.2016.08.006

Vilmundardóttir, O.K., Gísladóttir, G. and Lal, R. (2014). Early stage development of selected soil properties along the proglacial moraines of Skaftafellsjökull glacier, SE-Iceland. Catena, 121, 142-150.doi: https://doi.org/10.1016/j.catena.2014.04.020 DOI: https://doi.org/10.1016/j.catena.2014.04.020

Voicu, G. and Bardoux, M. (2002). Geochemical behavior under tropical weathering of the Barama–Mazaruni greenstone belt at Omai gold mine, Guiana Shield. Applied Geochemistry, 17(3), pp.321-336. https://doi.org/10.1016/S0883-2927(01)00085-3 DOI: https://doi.org/10.1016/S0883-2927(01)00085-3

Von Thaden, J.J., Laborde, J., Guevara, S. (2018). Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: The contribution of the 1998 protected natural area decree. Land Use Policy, 72, 443-450. DOI: https://doi.org/10.1016/j.landusepol.2017.12.040

Wada, K. (1985). The distinctive properties of Andosols. In Advances in soil science (pp. 173-229). Springer, New York, NY. DOI: https://doi.org/10.1007/978-1-4612-5088-3_4

Williamson, D., Jackson, M.J., Banerjee, S.K., Marvin, J., Merdaci, O., Thouveny, N., Decobert, M., Gibert-Massault, E., Massault, M., Mazaudier, D. and Taieb, M., 1999. Magnetic signatures of hydrological change in a tropical maar-lake (Lake Massoko, Tanzania): Preliminary results. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(9), pp.799-803. https://doi.org/10.1016/S1464-1895(99)00117-9 DOI: https://doi.org/10.1016/S1464-1895(99)00117-9

Wilson, M.J. (1999). The origin and formation of clay minerals in soils: past, present, and future perspectives. Clay minerals, 34(1), pp.7-25. DOI: https://doi.org/10.1180/000985599545957

Zhong, W., Wei, Z., Shang, S., Ye, S., Tang, X., Zhu, C., Xue, J., Ouyang, J. and Smol, J.P., 2018. A 15,400-year record of environmental magnetic variations in sub-alpine lake sediments from the western Nanling Mountains in South China: implications for palaeoenvironmental changes. Journal of Asian Earth Sciences, 154, pp.82-92. https://doi.org/10.1016/j.jseaes.2017.12.005 DOI: https://doi.org/10.1016/j.jseaes.2017.12.005

Artículos más leídos del mismo autor/a

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
2,4 promedio

##plugins.generic.pfl.reviewerProfiles##  N/D

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
N/D
32% con financiadores
##plugins.generic.pfl.competingInterests## 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
Artículos aceptados: 2%
33% aceptado
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

Indexado: {$indexList}

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
Geofísica Internacional
Editora: 
Universidad Nacional Autónoma de México. Instituto de Geofísica