Characterization of PM2.5 during ACU15 campaign in Mexico City

Contenido principal del artículo

Telma Castro Romero
Oscar Peralta
Cristina Prieto
Naxieli Santiago
Harry Alvarez-Ospina
Rocío García Martínez
Isabel Saavedra Rosado
María de la Luz Espinosa Fuentes
Enrique Hernández
Javier Miranda
Violeta Gómez
Corina Solís
Dara Salcedo
Ricardo Torres-Jardón
Amparo Martínez-Arroyo
Abraham Ortínez Álvarez
Gerardo Ruíz-Suárez
Elba Ortiz

Resumen

La Ciudad de México emite varios miles de toneladas de partículas provenientes del transporte y otros sectores económicos. Recolectamos muestras de PM2.5 de enero a marzo de 2015 y los análisis químicos mostraron que el PM2.5 se compone por 39% de carbono orgánico, 12% de carbono elemental, 23% de metales (Al, Si, S, P y K) y 5% metales pesados (Pb, Cr, Mn, Zn y Hg). Ca y Fe también estuvieron presentes en concentraciones traza, probablemente debido a la resuspensión de suelos. Los nitratos, sulfatos y amonio sugieren que el suroeste de la Ciudad de México, específicamente el sitio de muestreo, recibe más contaminantes oxidados por emisiones de vehículos que otros tipos de emisiones. Los análisis químicos no muestran cambios significativos en la composición o concentración de partículas en comparación con estudios anteriores.

Detalles del artículo

Cómo citar
Castro Romero, T. ., Peralta, O., Prieto, C. ., Santiago, N. ., Alvarez-Ospina, H., García Martínez, R., … Ortiz, E. (2024). Characterization of PM2.5 during ACU15 campaign in Mexico City. Geofísica Internacional, 63(4), 1225–1238. https://doi.org/10.22201/igeof.2954436xe.2024.63.4.1745
Sección
Artículo

Citas

Abanto, R. L., Castro, T., Peralta, O., Suarez, L. G. R., Salcedo, D., Carabali, G., et al. (2020). Mediciones continuas de carbono negro, monóxido de carbono y dióxido de carbono, durante la temporada seca caliente 2016, en un sitio periurbano de Querétaro, México. Ciencia & Desarrollo, 19(26), 68–76. doi: https://doi.org/10.33326/26176033.2020.26.934

Alvarez-Ospina, H., Peralta, O., Castro, T., & Saavedra, M. I. (2016). Optimum quantification temperature for total, organic, and elemental carbon using thermal-coulombimetric analysis. Atmospheric Environment, 145(2016), 74–80. doi: https://doi.org/10.1016/j.atmosenv.2016.08.080

Bozkurt, H., D’Souza, D. H., & Davidson, P. M. (2014). Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel (Mytilus edulis) homogenate. Applied and Environmental Microbiology, 80(10), 3191–7. doi: https://doi.org/10.1128/aem.00428-14

Chow, J. C., Watson, J. G., Edgerton, S. A., & Vega, E. (2002). Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of The Total Environment, 287(3), 177–201. doi: https://doi.org/10.1016/s0048-9697(01)00982-2

Chu, W., Li, L., Li, H., Zhang, Y., Chen, Y., Zhi, G., et al. (2023). Atmospheric Oxidation Capacity and Its Impact on the Secondary Inorganic Components of PM2.5 in Recent Years in Beijing: Enlightenment for PM2.5 Pollution Control in the Future. Atmosphere, 14(8), 1252. doi: https://doi.org/10.3390/atmos14081252

Dat, N.-Q., Ly, B.-T., Nghiem, T.-D., Nguyen, T.-T. H., Sekiguchi, K., Huyen, T.-T., et al. (2024). Influence of Secondary Inorganic Aerosol on the Concentrations of PM2.5 and PM0.1 during Air Pollution Episodes in Hanoi, Vietnam. Aerosol and Air Quality Research, 24(4), 220446. doi: https://doi.org/10.4209/aaqr.220446

Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2007). Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology, 39(8), 737–749. doi: https://doi.org/10.1080/02786820500191348

Echeverría, R. S., Jiménez, A. L. A., Barrera, M. del C. T., Alvarez, P. S., Hernandez, E. G., Vega, E., et al. (2023). Nitrogen and sulfur compounds in ambient air and in wet atmospheric deposition at Mexico city metropolitan area. Atmospheric Environment, 292, 119411. doi: https://doi.org/10.1016/j.atmosenv.2022.119411

Evans, J. S., Rojas‐Bracho, L., Hammitt, J. K., & Dockery, D. W. (2021). Mortality Benefits and Control Costs of Improving Air Quality in Mexico City: The Case of Heavy Duty Diesel Vehicles. Risk Analysis, 41(4), 661–677. doi: https://doi.org/10.1111/risa.13655

Garza-Galindo, R., Morton-Bermea, O., Hernández-Álvarez, E., Ordoñez-Godínez, S. L., Amador-Muñoz, O., Beramendi-Orosco, L. E., et al. (2019). Spatial and temporal distribution of metals in PM2.5 during 2013: assessment of wind patterns to the impacts of geogenic and anthropogenic sources. Environmental Monitoring and Assessment, 191(3), 165. doi: https://doi.org/10.1007/s10661-019-7251-4

Garzón, J. P., Huertas, J. I., Magaña, M., Huertas, M. E., Cárdenas, B., Watanabe, T., et al. (2015). Volatile organic compounds in the atmosphere of Mexico City. Atmospheric Environment, 119, 415–429. doi: https://doi.org/10.1016/j.atmosenv.2015.08.014

Hernández-López, A. E., Campo, J. M. M. del, Mugica-Álvarez, V., Hernández-Valle, B. L., Mejía-Ponce, L. V., Pineda-Santamaría, J. C., et al. (2020). A study of pm2.5 elemental composition in southwest mexico city and development of receptor models with positive matrix factorization. Revista Internacional de Contaminación Ambiental. 37, 54066. doi: https://doi.org/10.20937/rica.54066

Instituto Nacional de Ecología y Cambio Climático. (2016). Evolución de la calidad del aire de la ZMVM y episodios de ozono durante la temporada seca-caliente 2016. Instituto Nacional de Ecología y Cambio Climático

Instituto Nacional de Estadística y Geografía (2017). Anuario estadístico y geográfico de la Ciudad de México 2017. Instituto Nacional de Estadística y Geografía, México.

Li, G., Bei, N., Tie, X., & Molina, L. (2011). Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign. Atmospheric Chemistry And Physics, 11, 5169-5182. doi: https://doi.org/10.5194/acp-11-5169-2011

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. (2018). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences, 116(2), 201812168. doi: https://doi.org/10.1073/pnas.1812168116

Li, L., Wang, Q., Zhang, X., She, Y., Zhou, J., Chen, Y., et al. (2019). Characteristics of single atmospheric particles in a heavily polluted urban area of China: size distributions and mixing states. Environmental Science and Pollution Research, 1–13. doi: https://doi.org/10.1007/s11356-019-04579-3

Li, S., Chen, C., Yang, G., Fang, J., Sun, Y., Tang, L., et al. (2022). Sources and processes of organic aerosol in non-refractory PM1 and PM2.5 during foggy and haze episodes in an urban environment of the Yangtze River Delta, China. Environmental Research, 113557. doi: https://doi.org/10.1016/j.envres.2022.113557

Li, X., Li, S., Xiong, Q., Yang, X., Qi, M., Zhao, W., & Wang, X. (2018). Characteristics of PM2.5 Chemical Compositions and Their Effect on Atmospheric Visibility in Urban Beijing, China during the Heating Season. International Journal of Environmental Research and Public Health, 15(9), 1924. doi: https://doi.org/10.3390/ijerph15091924

Lima, G. N. de, Fonseca-Salazar, Ma. A., & Campo, J. (2023). Urban growth and loss of green spaces in the metropolitan areas of São Paulo and Mexico City: effects of land-cover changes on climate and water flow regulation. Urban Ecosystems, 26(6), 1739–1752. doi: https://doi.org/10.1007/s11252-023-01394-0

Mamkhezri, J., Bohara, A. K., & Camargo, A. I. (2020). Air pollution and daily mortality in the Mexico City Metropolitan Area. Atmósfera. 33(3). doi: https://doi.org/10.20937/atm.52557

Millán-Vázquez, F., Sosa-Echevería, R., Alarcón-Jiménez, A. L., Figueroa-Lara, J. de J., Torres-Rodríguez, M., Valle-Hernández, B. L., & Mugica-Álvarez, V. (2023). Temporal Variation and Potential Sources of Water-Soluble Inorganic Ions in PM2.5 in Two Sites of Mexico City. Atmosphere, 14(10), 1585. doi: https://doi.org/10.3390/atmos14101585

Morton-Bermea, O., Hernández-Álvarez, E., Ordoñez-Godínez, S. L., & Montes-Ávila, I. (2021). Mercury, Platinum, Antimony and Other Trace Elements in the Atmospheric Environment of the Urban Area of Mexico City: Use of Ficus benjamina as Biomonitor. Bulletin of Environmental Contamination and Toxicology, 106(4), 665–669. doi: https://doi.org/10.1007/s00128-020-03080-9

Morton-Bermea, O., Schiavo, B., Salgado-Martínez, E., Almorín-Ávila, M. A., & Hernández-Álvarez, E. (2021). Gaseous Elemental Mercury (GEM) in the Mexico City Metropolitan Area. Bulletin of Environmental Contamination and Toxicology, 107(3), 514–518. doi: https://doi.org/10.1007/s00128-021-03293-6

Pósfai, M., Simonics, R., Li, J., Hobbs, P. V., & Buseck, P. R. (2003). Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D13). doi: https://doi.org/10.1029/2002jd002291

Prieto, C., Alvarez-Ospina, H., Salcedo, D., Castro, T., & Peralta, O. (2023). Mass Absorption Efficiency of PM1 in Mexico City during ACU15. Atmosphere, 14(1), 100. doi: https://doi.org/10.3390/atmos14010100

Rosa, N. S. la, Prieto, C., Pavia, R., Peralta, O., Alvarez-Ospina, H., Saavedra, I., et al. (2024). Carbonaceous particles and PM2.5 optical properties in Mexico City during the ACU15 campaign. Atmósfera, 38, 369–380. doi: https://doi.org/10.20937/atm.53270

Salcedo, D., Alvarez-Ospina, H., Peralta, O., & Castro, T. (2018). PM1 Chemical Characterization during the ACU15 Campaign, South of Mexico City. Atmosphere, 9(6), 232. doi: https://doi.org/10.3390/atmos9060232

Schiavo, B., Morton-Bermea, O., Salgado-Martínez, E., García-Martínez, R., & Hernández-Álvarez, E. (2022). Health risk assessment of gaseous elemental mercury (GEM) in Mexico City. Environmental Monitoring and Assessment, 194(7), 456. doi: https://doi.org/10.1007/s10661-022-10107-7

Secretaría del Medio Ambiente de la Ciudad de México. (2021). Inventario de Emisiones de la Zona Metropolitana del Valle de México 2018. Secretaría del Medio Ambiente de la Ciudad de México

Sharma, S. K., Mandal, T. K., Sharma, A., Saraswati, & Jain, S. (2018). Seasonal and annual trends of carbonaceous species of PM10 over a megacity Delhi, India during 2010–2017. Journal of Atmospheric Chemistry, 75(3), 305–318. doi: https://doi.org/10.1007/s10874-018-9379-y

Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., & Pavoni, B. (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4), 1927–1939. doi: https://doi.org/10.5194/acp-13-1927-2013

Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29(23), 3527–3544. doi: https://doi.org/10.1016/1352-2310(94)00276-q

Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., et al. (2004). Analysis of PM2.5and PM10 in the Atmosphere of Mexico City during 2000-2002. Journal of the Air & Waste Management Association, 54(7), 786–798. doi: https://doi.org/10.1080/10473289.2004.10470952

Warneke, C., Gouw, J. A. de, Edwards, P. M., Holloway, J. S., Gilman, J. B., Kuster, W. C., et al. (2013). Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday‐weekend effect. Journal of Geophysical Research.118(10), 5018-5028. doi: https://doi.org/10.1002/jgrd.50423

Zavala, M., Brune, W. H., Velasco, E., Retama, A., Cruz-Alavez, L. A., & Molina, L. T. (2020). Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area. Atmospheric Environment, 238, 117747. doi: https://doi.org/10.1016/j.atmosenv.2020.117747

Zhang, F., Xu, L., Chen, J., Chen, X., Niu, Z., Lei, T., et al. (2013). Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology, 11(3), 264–272. doi: https://doi.org/10.1016/j.partic.2012.07.001

Zhang, Y., Zhang, Q., Cheng, Y., Su, H., Li, H., Li, M., et al. (2018). Amplification of light absorption of black carbon associated with air pollution. Atmospheric Chemistry and Physics, 18(13), 9879–9896. doi: https://doi.org/10.5194/acp-18-9879-2018

Zhao, J., Ma, C., He, C., Zhang, Z., Jiang, T., Tang, R., & Chen, Q. (2022). Variations in Sulfur and Nitrogen Oxidation Rates in Summer Aerosols from 2014 to 2020 in Wuhan, China. Atmosphere, 13(8), 1199. doi: https://doi.org/10.3390/atmos13081199

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
2
2,4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
N/D
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
2%
33%
Días para la publicación 
360
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Geofísica Internacional