Characterization of PM2.5 during ACU15 campaign in Mexico City
Contenido principal del artículo
Resumen
La Ciudad de México emite varios miles de toneladas de partículas provenientes del transporte y otros sectores económicos. Recolectamos muestras de PM2.5 de enero a marzo de 2015 y los análisis químicos mostraron que el PM2.5 se compone por 39% de carbono orgánico, 12% de carbono elemental, 23% de metales (Al, Si, S, P y K) y 5% metales pesados (Pb, Cr, Mn, Zn y Hg). Ca y Fe también estuvieron presentes en concentraciones traza, probablemente debido a la resuspensión de suelos. Los nitratos, sulfatos y amonio sugieren que el suroeste de la Ciudad de México, específicamente el sitio de muestreo, recibe más contaminantes oxidados por emisiones de vehículos que otros tipos de emisiones. Los análisis químicos no muestran cambios significativos en la composición o concentración de partículas en comparación con estudios anteriores.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Abanto, R. L., Castro, T., Peralta, O., Suarez, L. G. R., Salcedo, D., Carabali, G., et al. (2020). Mediciones continuas de carbono negro, monóxido de carbono y dióxido de carbono, durante la temporada seca caliente 2016, en un sitio periurbano de Querétaro, México. Ciencia & Desarrollo, 19(26), 68–76. doi: https://doi.org/10.33326/26176033.2020.26.934
Alvarez-Ospina, H., Peralta, O., Castro, T., & Saavedra, M. I. (2016). Optimum quantification temperature for total, organic, and elemental carbon using thermal-coulombimetric analysis. Atmospheric Environment, 145(2016), 74–80. doi: https://doi.org/10.1016/j.atmosenv.2016.08.080
Bozkurt, H., D’Souza, D. H., & Davidson, P. M. (2014). Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel (Mytilus edulis) homogenate. Applied and Environmental Microbiology, 80(10), 3191–7. doi: https://doi.org/10.1128/aem.00428-14
Chow, J. C., Watson, J. G., Edgerton, S. A., & Vega, E. (2002). Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of The Total Environment, 287(3), 177–201. doi: https://doi.org/10.1016/s0048-9697(01)00982-2
Chu, W., Li, L., Li, H., Zhang, Y., Chen, Y., Zhi, G., et al. (2023). Atmospheric Oxidation Capacity and Its Impact on the Secondary Inorganic Components of PM2.5 in Recent Years in Beijing: Enlightenment for PM2.5 Pollution Control in the Future. Atmosphere, 14(8), 1252. doi: https://doi.org/10.3390/atmos14081252
Dat, N.-Q., Ly, B.-T., Nghiem, T.-D., Nguyen, T.-T. H., Sekiguchi, K., Huyen, T.-T., et al. (2024). Influence of Secondary Inorganic Aerosol on the Concentrations of PM2.5 and PM0.1 during Air Pollution Episodes in Hanoi, Vietnam. Aerosol and Air Quality Research, 24(4), 220446. doi: https://doi.org/10.4209/aaqr.220446
Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2007). Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology, 39(8), 737–749. doi: https://doi.org/10.1080/02786820500191348
Echeverría, R. S., Jiménez, A. L. A., Barrera, M. del C. T., Alvarez, P. S., Hernandez, E. G., Vega, E., et al. (2023). Nitrogen and sulfur compounds in ambient air and in wet atmospheric deposition at Mexico city metropolitan area. Atmospheric Environment, 292, 119411. doi: https://doi.org/10.1016/j.atmosenv.2022.119411
Evans, J. S., Rojas‐Bracho, L., Hammitt, J. K., & Dockery, D. W. (2021). Mortality Benefits and Control Costs of Improving Air Quality in Mexico City: The Case of Heavy Duty Diesel Vehicles. Risk Analysis, 41(4), 661–677. doi: https://doi.org/10.1111/risa.13655
Garza-Galindo, R., Morton-Bermea, O., Hernández-Álvarez, E., Ordoñez-Godínez, S. L., Amador-Muñoz, O., Beramendi-Orosco, L. E., et al. (2019). Spatial and temporal distribution of metals in PM2.5 during 2013: assessment of wind patterns to the impacts of geogenic and anthropogenic sources. Environmental Monitoring and Assessment, 191(3), 165. doi: https://doi.org/10.1007/s10661-019-7251-4
Garzón, J. P., Huertas, J. I., Magaña, M., Huertas, M. E., Cárdenas, B., Watanabe, T., et al. (2015). Volatile organic compounds in the atmosphere of Mexico City. Atmospheric Environment, 119, 415–429. doi: https://doi.org/10.1016/j.atmosenv.2015.08.014
Hernández-López, A. E., Campo, J. M. M. del, Mugica-Álvarez, V., Hernández-Valle, B. L., Mejía-Ponce, L. V., Pineda-Santamaría, J. C., et al. (2020). A study of pm2.5 elemental composition in southwest mexico city and development of receptor models with positive matrix factorization. Revista Internacional de Contaminación Ambiental. 37, 54066. doi: https://doi.org/10.20937/rica.54066
Instituto Nacional de Ecología y Cambio Climático. (2016). Evolución de la calidad del aire de la ZMVM y episodios de ozono durante la temporada seca-caliente 2016. Instituto Nacional de Ecología y Cambio Climático
Instituto Nacional de Estadística y Geografía (2017). Anuario estadístico y geográfico de la Ciudad de México 2017. Instituto Nacional de Estadística y Geografía, México.
Li, G., Bei, N., Tie, X., & Molina, L. (2011). Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign. Atmospheric Chemistry And Physics, 11, 5169-5182. doi: https://doi.org/10.5194/acp-11-5169-2011
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. (2018). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences, 116(2), 201812168. doi: https://doi.org/10.1073/pnas.1812168116
Li, L., Wang, Q., Zhang, X., She, Y., Zhou, J., Chen, Y., et al. (2019). Characteristics of single atmospheric particles in a heavily polluted urban area of China: size distributions and mixing states. Environmental Science and Pollution Research, 1–13. doi: https://doi.org/10.1007/s11356-019-04579-3
Li, S., Chen, C., Yang, G., Fang, J., Sun, Y., Tang, L., et al. (2022). Sources and processes of organic aerosol in non-refractory PM1 and PM2.5 during foggy and haze episodes in an urban environment of the Yangtze River Delta, China. Environmental Research, 113557. doi: https://doi.org/10.1016/j.envres.2022.113557
Li, X., Li, S., Xiong, Q., Yang, X., Qi, M., Zhao, W., & Wang, X. (2018). Characteristics of PM2.5 Chemical Compositions and Their Effect on Atmospheric Visibility in Urban Beijing, China during the Heating Season. International Journal of Environmental Research and Public Health, 15(9), 1924. doi: https://doi.org/10.3390/ijerph15091924
Lima, G. N. de, Fonseca-Salazar, Ma. A., & Campo, J. (2023). Urban growth and loss of green spaces in the metropolitan areas of São Paulo and Mexico City: effects of land-cover changes on climate and water flow regulation. Urban Ecosystems, 26(6), 1739–1752. doi: https://doi.org/10.1007/s11252-023-01394-0
Mamkhezri, J., Bohara, A. K., & Camargo, A. I. (2020). Air pollution and daily mortality in the Mexico City Metropolitan Area. Atmósfera. 33(3). doi: https://doi.org/10.20937/atm.52557
Millán-Vázquez, F., Sosa-Echevería, R., Alarcón-Jiménez, A. L., Figueroa-Lara, J. de J., Torres-Rodríguez, M., Valle-Hernández, B. L., & Mugica-Álvarez, V. (2023). Temporal Variation and Potential Sources of Water-Soluble Inorganic Ions in PM2.5 in Two Sites of Mexico City. Atmosphere, 14(10), 1585. doi: https://doi.org/10.3390/atmos14101585
Morton-Bermea, O., Hernández-Álvarez, E., Ordoñez-Godínez, S. L., & Montes-Ávila, I. (2021). Mercury, Platinum, Antimony and Other Trace Elements in the Atmospheric Environment of the Urban Area of Mexico City: Use of Ficus benjamina as Biomonitor. Bulletin of Environmental Contamination and Toxicology, 106(4), 665–669. doi: https://doi.org/10.1007/s00128-020-03080-9
Morton-Bermea, O., Schiavo, B., Salgado-Martínez, E., Almorín-Ávila, M. A., & Hernández-Álvarez, E. (2021). Gaseous Elemental Mercury (GEM) in the Mexico City Metropolitan Area. Bulletin of Environmental Contamination and Toxicology, 107(3), 514–518. doi: https://doi.org/10.1007/s00128-021-03293-6
Pósfai, M., Simonics, R., Li, J., Hobbs, P. V., & Buseck, P. R. (2003). Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D13). doi: https://doi.org/10.1029/2002jd002291
Prieto, C., Alvarez-Ospina, H., Salcedo, D., Castro, T., & Peralta, O. (2023). Mass Absorption Efficiency of PM1 in Mexico City during ACU15. Atmosphere, 14(1), 100. doi: https://doi.org/10.3390/atmos14010100
Rosa, N. S. la, Prieto, C., Pavia, R., Peralta, O., Alvarez-Ospina, H., Saavedra, I., et al. (2024). Carbonaceous particles and PM2.5 optical properties in Mexico City during the ACU15 campaign. Atmósfera, 38, 369–380. doi: https://doi.org/10.20937/atm.53270
Salcedo, D., Alvarez-Ospina, H., Peralta, O., & Castro, T. (2018). PM1 Chemical Characterization during the ACU15 Campaign, South of Mexico City. Atmosphere, 9(6), 232. doi: https://doi.org/10.3390/atmos9060232
Schiavo, B., Morton-Bermea, O., Salgado-Martínez, E., García-Martínez, R., & Hernández-Álvarez, E. (2022). Health risk assessment of gaseous elemental mercury (GEM) in Mexico City. Environmental Monitoring and Assessment, 194(7), 456. doi: https://doi.org/10.1007/s10661-022-10107-7
Secretaría del Medio Ambiente de la Ciudad de México. (2021). Inventario de Emisiones de la Zona Metropolitana del Valle de México 2018. Secretaría del Medio Ambiente de la Ciudad de México
Sharma, S. K., Mandal, T. K., Sharma, A., Saraswati, & Jain, S. (2018). Seasonal and annual trends of carbonaceous species of PM10 over a megacity Delhi, India during 2010–2017. Journal of Atmospheric Chemistry, 75(3), 305–318. doi: https://doi.org/10.1007/s10874-018-9379-y
Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., & Pavoni, B. (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4), 1927–1939. doi: https://doi.org/10.5194/acp-13-1927-2013
Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29(23), 3527–3544. doi: https://doi.org/10.1016/1352-2310(94)00276-q
Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., et al. (2004). Analysis of PM2.5and PM10 in the Atmosphere of Mexico City during 2000-2002. Journal of the Air & Waste Management Association, 54(7), 786–798. doi: https://doi.org/10.1080/10473289.2004.10470952
Warneke, C., Gouw, J. A. de, Edwards, P. M., Holloway, J. S., Gilman, J. B., Kuster, W. C., et al. (2013). Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday‐weekend effect. Journal of Geophysical Research.118(10), 5018-5028. doi: https://doi.org/10.1002/jgrd.50423
Zavala, M., Brune, W. H., Velasco, E., Retama, A., Cruz-Alavez, L. A., & Molina, L. T. (2020). Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area. Atmospheric Environment, 238, 117747. doi: https://doi.org/10.1016/j.atmosenv.2020.117747
Zhang, F., Xu, L., Chen, J., Chen, X., Niu, Z., Lei, T., et al. (2013). Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology, 11(3), 264–272. doi: https://doi.org/10.1016/j.partic.2012.07.001
Zhang, Y., Zhang, Q., Cheng, Y., Su, H., Li, H., Li, M., et al. (2018). Amplification of light absorption of black carbon associated with air pollution. Atmospheric Chemistry and Physics, 18(13), 9879–9896. doi: https://doi.org/10.5194/acp-18-9879-2018
Zhao, J., Ma, C., He, C., Zhang, Z., Jiang, T., Tang, R., & Chen, Q. (2022). Variations in Sulfur and Nitrogen Oxidation Rates in Summer Aerosols from 2014 to 2020 in Wuhan, China. Atmosphere, 13(8), 1199. doi: https://doi.org/10.3390/atmos13081199