Detection of ionospheric response to earthquakes in Mexico: case study of September 8, 2021 and September 19, 2022
Contenido principal del artículo
Resumen
Exploramos la posibilidad de detectar perturbaciones ionosféricas después de dos terremotos (EQ) (Mw > 7) registrados el 8 de septiembre de 2021 y el 19 de septiembre de 2022 en México. La ubicación del epicentro, la profundidad, el mecanismo focal, la estación del año y las condiciones de fondo del Clima Espacial fueron similares para los dos EQ. La hora local y la magnitud fueron diferentes. Se observaron respuestas, en forma de ondas, en la serie temporal de TEC inclinado filtrado, después de ambos EQ, en trayectorias de rayos aislados entre satélites y receptores. Las variaciones irregulares superaron el nivel de fluctuación de fondo y no se repitieron en otros días. Su forma y escalas temporales permitieron asociarlas con las ondas acústicas-gravitacionales generadas por el desplazamiento vertical durante los poderosos EQ. El EQ nocturno del 8 de septiembre causó perturbaciones a escala media, caracterizadas por fluctuaciones de forma N y И en TEC, con un período de ~30 min y amplitudes de (0.1-0.2) TECU. La respuesta al EQ diurno del 19 de septiembre fue de dos tipos: perturbaciones a escala pequeña de forma N y И, con un período de ~15 min y amplitudes de (0.1-1.1) TECU; y perturbaciones a escala media de forma N, V, И y M, con un período de ~30 min y amplitudes de (0.1-0.2) TECU. Las conclusiones presentadas para la región mexicana son preliminares, ya que se necesitan más datos estadísticos.
Detalles del artículo
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Afraimovich, E. L., Astafieva, E. I., & Kirushkin, V. V. (2006). Localization of the source of ionospheric disturbance generated during an earthquake. International Journal of Geomagnetism and Aeronomy, 6(2), 1-13.
Afraimovich, E.L., Astafyeva, E.I., Demyanov, V.V., Edemskiy, I.K., Gavrilyuk, N.S., Ishin, A.B., Kosogorov, E.A., Leonovich, L.A., Lesyuta, O.S., Palamartchouk, K.S., Perevalova, N. P., Polyakova, A. S., Smolkov, G. Y., Voeykov, S. V., Yasyukevich, Y, V., & Zhivetiev, I. V. (2013). A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 3. doi: https://doi.org/10.1051/swsc/2013049
Afraimovich, E.L., Perevalova, N.P., Plotnikov, A.V, & Uralov, A.M. (2001). The shock-acoustic waves generated by earthquakes. Annales Geophysicae. 19(4), 395–409. doi: https://doi.org/10.5194/angeo-19-395-2001
Artru J., Ducic, V., Kanamori, H., Lognonné, P., & Murakami, M. (2005). Ionospheric detection of gravity waves induced by tsunamis, Geophysical Journal International, 160(3), 840-848. doi: https://doi.org/10.1111/j.1365-246X.2005.02552.x
Astafyeva, E. (2019). Ionospheric detection of natural hazards. Reviews of Geophysics, 57(4), 1265–1288. doi: https://doi.org/10.1029/2019RG000668
Astafyeva, E., Heki, K., Kiryushkin, V., Afraimovich, E., & Shalimov, S. (2009). Two mode long-distance propagation of coseismic ionosphere disturbances. Journal of Geophysical Research, 114(A10). doi: https://doi.org/10.1029/2008JA013853
Borchevkina, O.P., & Karpov, I.V. (2018). Observations of variations in total electron content in the solar terminator region in the ionosphere, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 15(1), 299–305. doi: https://doi.org/10.21046/2070-7401-2018-15-1-299-305
Borchevkina, O.P., Adamson, S.O., & Dyakov, Y.A. et al. (2021). The influence of tropospheric processes on disturbances in the D and E ionospheric layers. Atmosphere, 12(9), 1116. doi: https://doi.org/10.3390/atmos12091116
Bravo, M., Benavente, R., Foppiano, A., Urra, B., & Ovalle, E. (2022). Traveling Ionospheric Disturbances observed over South America after lithospheric events: 2010–2020. Journal of Geophysical Research: Space Physics, 127(4). doi: https://doi.org/10.1029/2021JA030060
Cabral-Cano, E., Pérez-Campos, X., Márquez-Azúa, B., Sergeeva, M.A., Salazar-Tlaczan, L., DeMets, C., Adams, D., Galetzka, J., Hodgkinson, K., Feaux, K., Serra, Y. L., Mattioli, G. S., & Miller, M. (2018). TLALOCNet: A Continuous GPS-Met Backbone in Mexico for Seismotectonic, and Atmospheric Research. Seismological Research Letters. 89(2A), 373–381. doi: https://doi.org/10.1785/0220170190
Calais, E. & Minster, B. (1995). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters. 22(9), 1045-1048. doi: https://doi.org/10.1029/95GL00168
Cander, L.R. (2019) Ionospheric Space Weather. Springer Geophysics. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-99331-7
Davies, K. (1965). Ionospheric radio propagation. US Department of Commerce, National Bureau of Standards.
Davies, K., & Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. Journal of Geophysical Research, 70(9), 2251– 2253. doi: https://doi.org/10.1029/JZ070i009p02251
Ducic, V., Artru, J., & Longnonne, P. (2003). Ionospheric remote sensing of the Denali Earthquake Rayleigh surface wave. Geophysical Research Letters, 30(18). doi: https://doi.org/10.1029/2003GL017812
Edemskiy, I. K., & Yasyukevich, A. S. (2018). Observing wave packets generated by solar terminator in TEC during typhoons. Solar-Terrestrial Physics, 4(2), 33-40. doi: https://doi.org/10.12737/stp-42201806
Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., & Barros, D. (2018). Medium‐scale traveling ionospheric disturbances observed by detrended total electron content maps over Brazil. Journal of Geophysical Research: Space Physics, 123(3), 2215-2227. doi: https://doi.org/10.1002/2017JA025021
Gautam, P. K., Chauhan, V., Sathyaseelan, R., Kumar, N., & Pappachen, J. P. (2018). Co-seismic ionospheric GPS-TEC disturbances from different source characteristic earthquakes in the Himalaya and the adjoining regions. NRIAG Journal of Astronomy and Geophysics. 7(2), 237-246. doi: https://doi.org/10.1016/j.nrjag.2018.05.009
Golubkov, G.V., Adamson, S.O., & Borchevkina, O.P. et al. (2022). Coupling of Ionospheric Disturbances with Dynamic Processes in the Troposphere. Russian Journal of Physical Chemistry B, 16(3), 508–530. doi: https://doi.org/10.1134/S1990793122030058
Gonzalez-Esparza, J. A., Sergeeva, M. A., Corona-Romero, P., Mejia-Ambriz, J.C., Gonzalez, L.X., V. De la Luz, Aguilar-Rodriguez, E., Rodriguez, M., & Romero-Hernández, E. (2018). Space weather events, hurricanes, and earthquakes in Mexico in September 2017. Space Weather, 16(12), 2038–2051. doi: https://doi.org/10.1029/2018SW001995
Grzesiak, M., & Świątek, A. (2012). Solar terminator-related ionosphere derived from GPS TEC measurements: a case study. Acta Geophysica, 60, 1224-1235. doi: https://doi.org/10.2478/s11600-011-0048-7
He, L., & Heki, K. (2017). Ionospheric anomalies immediately before Mw7.0–8.0 earthquakes, J. Geophys. Res. Space Physics, 122, 8659–8678. doi:10.1002/2017JA024012
Heki, K., & Ping, J. (2005). Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters, 236(3-4), 845-855. doi: https://doi.org/10.1016/j.epsl.2005.06.010
Hocke, K. & Schlegel, K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Annales Geophysicae, 14, 917–940. doi: https://doi.org/10.1007/s00585-996-0917-6
Iglesias, A., Singh, S.K., Castro‐Artola, O., Pérez‐Campos, X., Corona‐Fernandez, R.D. Santoyo, M.A., Espíndola, V.H., Arroyo, D. & Franco, S.I. (2022). A Source Study of the Mw7.0 Acapulco, Mexico, Earthquake of 8 September 2021. Seismological Research Letters, 93(6), 3205–3218. doi: https://doi.org/10.1785/0220220124
Jin, S., Jin, R., Liu, X., Jin, S., Jin, R., & Liu, X. (2019). Tsunami Ionospheric Disturbances. En A. Shuanggen Jin, R. Jin, X. Liu (Eds.), GNSS Atmospheric Seismology: Theory, Observations and Modeling (pp.211-244) Springer Singapore. doi: https://doi.org/10.1007/978-981-10-3178-6_12
Jin, S., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews, 147, 54-64. doi: https://doi.org/10.1016/j.earscirev.2015.05.003
Kazimirovsky, E.S., Kokourov, V.D., & Vergasova, G.V. (2006). Dynamical climatology of the upper mesosphere, lower thermosphere and ionosphere. Surveys Geophysics. 27, 211–255. doi: https://doi.org/10.1007/s10712-005-3819-3
Kelly, M.C. (2009). The Earth's Ionosphere: Plasma Physics and Electrodynamics, (2a ed.) Academic Press (Elsevier), San Diego, CA USA.
Kong, J., Yao, Y., & Zhou, C. et al. (2018). Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake. Journal of Geodesy, 92, 1255–1266. doi: https://doi.org/10.1007/s00190-018-1117-3
Laštovička, J. (2006). Forcing of the ionosphere by waves from below. Journal of Atmospheric and Solar-Terrestrial Physics, 68(3-5), 479-497. https://doi.org/10.1016/j.jastp.2005.01.018
Liu, C., Lay, T., Bai, Y., He, P., & Xiong, X. (2023). Coseismic Slip Model of the 19 September 2022 M w 7.6 Michoacán, Mexico, Earthquake: A Quasi‐Repeat of the 1973 Mw 7.6 Rupture. The Seismic Record, 3(2), 57-68. doi: https://doi.org/10.1785/0320220042
Liu, J. Y., Tsai, H. F., Lin, C. H., Kamogawa, M., Chen, Y. I., Lin, C. H., Huang, B. S., Yu, S. B., & Yeh, Y. H. (2010). Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake. Journal of Geophysical Research, 115(A8), A08303, doi: https://doi.org/10.1029/2009JA014943
Lognonné, P. (2009). Seismic waves from atmospheric sources and atmospheric/ionospheric signatures of seismic waves. En A. Le Pichon, A., Blanc, E., Hauchecorne, A. (Eds) Infrasound Monitoring for Atmospheric Studies, (pp. 281-304). Springer, Dordrecht. doi: https://doi.org/10.1007/978-1-4020-9508-5_10
Lognonné, P., Artru, J., Garcia, R., Crespon, F., Ducic, V., Jeansou, E., Occhipinti, G., Helbert, J., Moreaux, G., & Godet, P. E. (2006). Ground-based GPS imaging of ionospheric post-seismic signal, Planetary and Space Science, 54(5), 528-540. doi: https://doi.org/10.1016/j.pss.2005.10.021
Melgarejo-Morales, A., Vazquez-Becerra, G.E., Millan-Almaraz, J. R., Martinez-Felix, C.A., & Munawar, S. (2023). Applying support vector machine (SVM) using GPS-TEC and Space Weather parameters to distinguish ionospheric disturbances possibly related to earthquakes. Advances in Space Research. 72(10), 4420-4434. doi: https://doi.org/10.1016/j.asr.2023.08.028
Oikonomou, C., Haralambous, H., Pulinets, S., Khadka, A., Paudel, S. R., Barta, V., Muslim, B., Kourtidis, K., Karagioras, A., & Inyurt, S. (2020). Investigation of Pre-Earthquake Ionospheric and Atmospheric Disturbances for Three Large Earthquakes in Mexico. Geosciences, 11(1), 16. doi: https://doi.org/10.3390/geosciences11010016
Peltier, W.R., Hines, C.O. (1976). On the possible detection of tsunamis by a monitoring of the ionosphere. Journal of Geophysical Research, 81(12), 1995-2000, doi: https://doi.org/10.1029/JC081i012p01995
Perevalova, N.P., & Ishin, A.B. (2011) Effects of tropical cyclones in the ionosphere from data of sounding by GPS signals. Izvestiya Atmospheric and Oceanic Physics, 47, 1072–1083. doi: https://doi.org/10.1134/S000143381109012X
Perevalova, N.P., Sankov, V. A., Astafyeva, E.I., & Zhupityaeva, А.S. (2014). Threshold magnitude for Ionospheric TEC response to earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 108, 77-90. doi: https://doi.org/10.1016/j.jastp.2013.12.014
Perevalova, N.P., Shestakov, N.V., Voeykov, S.V., Takahashi, H., & Guojie, M. (2015). Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophysical Research Letters, 42(16), 6535–6543. doi: https://doi.org/10.1002/2015GL064792
Pérez-Campos, X., Espíndola, V.H., Pérez, J., Estrada, J.A., Monroy, C.C., Bello, D., González-López, A., Gonzalez Avila, D., Contreras Ruiz Esparza, M.G., Maldonado, R., & et al. (2018). The Mexican National Seismological Service: An Overview. Seismological Research Letters, 89(2A), 318-323. doi: https://doi.org/10.1785/0220170186
Rabinovich, A.B., & Eblé, M.C. (2015). Deep ocean measurements of tsunami waves. Pure and Applied Geophysics. 172, 3281–3312. doi: https://doi.org/10.1007/s00024-015-1058-1
Ramírez-Rojas, A., Flores-Márquez, E.L., Vargas, C.A. (2023). Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022. Entropy, 25(5), 799. doi :https://doi.org/10.3390/e25050799
Rolland, L., Vergnolle, M., Nocquet, J.-M., Sladen, A., Dessa, J.X. Tavakoli, F., Nankali, H.R. & Cappa, F. (2013). Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw7.1, dip-slip Van earthquake, Eastern Turkey. Geophysical Research Letters. 40(11), 2518-2522, doi: https://doi.org/10.1002/grl.50544
Sergeeva, M.A., Demyanov, V.V., Maltseva, O.A., Mokhnatkin, A., Rodriguez-Martinez, M., Gutierrez, R., Vesnin, A.M., Gatica-Acevedo, V.J., Gonzalez-Esparza, J.A., Fedorov, M.E., Ishina, T. V., Pazos, M., Gonzalez, L.X., Corona-Romero, P., Mejia-Ambriz, J.C., Gonzalez-Aviles, J.J., Aguilar-Rodriguez, E., Cabral-Cano, E., Mendoza, B., Romero-Hernandez, E., Caraballo, R., & Orrala-Legorreta, I.D. (2021). Assessment of Morelian Meteoroid Impact on Mexican Environment. Atmosphere. 12, 185. doi: https://doi.org/10.3390/atmos12020185
Sergeeva, M.A., Maltseva, O.A., Vesnin, A.M., Blagoveshchensky, D.V., Gatica-Acevedo, V.J., Gonzalez-Esparza, J.A., Chernov, A.G., Orrala-Legorreta, I.D., Melgarejo-Morales, A., & Gonzalez, L.X.; et al. (2023). Solar Flare Effects Observed over Mexico during 30–31 March 2022. Remote Sens. 15, 397. doi: https://doi.org/10.3390/rs15020397
Shi, K., Guo, J., & Liu, X. et al. (2020). Seismo-ionospheric anomalies associated with Mw 7.8 Nepal earthquake on 2015 April 25 from CMONOC GPS data. Geosciences Journal 24, 391–406. doi: https://doi.org/10.1007/s12303-019-0038-3
Singh, S.K., Iglesias, A., Arroyo, D., Pérez-Campos X., Ordaz, M., Mendoza, C., Corona-Fernández, R.D., Rivera, L.V., Espíndola, H., González-Ávila, D., Martínez-López, R., Castro-Artola, O., Santoyo, M.A., & S. I. Franco; A Seismological Study of the Michoacán-Colima, Mexico, Earthquake of 19 September 2022 (Mw7.6). Geofísica Internacional, 62(2) 445-465. doi: https://doi.org/10.22201/igeof.2954436xe.2023.62.2.1453
Servicio Mareográfico Nacional. (2021). Reporte preliminar: registro en las estaciones del Servicio Mareográfico Nacional del tsunami producido por el sismo de magnitud 7.1 ocurrido en Acapulco, Guerrero, Boletín del Servicio Mareográfico Nacional del Instituto de Geofísica de la Universidad Nacional Autónoma de México, 1-15.
Servicio Mareográfico Nacional. (2022). Reporte final: Registro en las estaciones del Servicio Mareográfico Nacional del tsunami producido por el sismo de magnitud 7.7 ocurrido en Michoacán, Boletín del Servicio Mareográfico Nacional del Instituto de Geofísica de la Universidad Nacional Autónoma de México, 1-18
Somsikov, V.M. (2011). Solar terminator and dynamic phenomena in the atmosphere: A review. Geomagn. Aeron. 51, 707-719. doi: https://doi.org/10.1134/S0016793211060168
Sripathi, S., Singh, R., Tiwari, P., & Kumar, M. R. (2020). On the co-seismic ionospheric disturbances (CIDs) in the rapid run ionosonde observations over Allahabad following Mw 7.8 Nepal Earthquake on April 25, 2015. Journal of Geophysical Research: Space Physics. 125. doi: https://doi.org/10.1029/2019JA027001
Servicio Sismológico Nacional (2021). Reporte especial. Sismo del 7 de septiembre de 2021, guerrero (M 7.1), Servicio Sismológico Nacional, Instituto de Geofísica, UNAM, México. http://www.ssn.unam.mx/sismicidad/reportes-especiales/2021/SSNMX_rep_esp_20210907_Guerrero_M71.pdf
Servicio Sismológico Nacional (2022). Reporte especial. Sismo del 19 de septiembre de 2022, Michoacán (M 7.7), 2022. Servicio Sismológico Nacional, Instituto de Geofísica, UNAM, México. http://www.ssn.unam.mx/sismicidad/reportes-especiales/2022/SSNMX_rep_esp_20220919_Michoacan_M74.pdf
Yasyukevich, Y.V., Kiselev, A.V., Zhivetiev, I.V., Edemskiy, I.K., Syrovatskii, S.V., Maletckii, B.M., & Vesnin, A.M. (2020). SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 24, 69. doi: https://doi.org/10.1007/s10291-020-00983-2
Zaytsev, O., Tsukanova, E., Rabinovich, A.B., Thomson, R.E. (2023). The Michoacán Tsunami of 19 September 2022 on the Coast of Mexico: Observations, Spectral Properties and Modelling. Water. 15, 164. doi: https://doi.org/10.3390/w15010164
Zhang, Y., Liu, X., Guo, J., Shi, K., Zhou, M., & Wang, F. (2021). Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw 7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere. 12, 83. doi: https://doi.org/10.3390/atmos12010083