Detection of ionospheric response to earthquakes in Mexico: case study of September 8, 2021 and September 19, 2022

Contenido principal del artículo

Angela Melgarejo
Maria A. Sergeeva
Ekaterina Kazachkina
Artem M. Vesnin
Ernesto Aguilar-Rodriguez

Resumen

Exploramos la posibilidad de detectar perturbaciones ionosféricas después de dos terremotos (EQ) (Mw > 7) registrados el 8 de septiembre de 2021 y el 19 de septiembre de 2022 en México. La ubicación del epicentro, la profundidad, el mecanismo focal, la estación del año y las condiciones de fondo del Clima Espacial fueron similares para los dos EQ. La hora local y la magnitud fueron diferentes. Se observaron respuestas, en forma de ondas, en la serie temporal de TEC inclinado filtrado, después de ambos EQ, en trayectorias de rayos aislados entre satélites y receptores. Las variaciones irregulares superaron el nivel de fluctuación de fondo y no se repitieron en otros días. Su forma y escalas temporales permitieron asociarlas con las ondas acústicas-gravitacionales generadas por el desplazamiento vertical durante los poderosos EQ. El EQ nocturno del 8 de septiembre causó perturbaciones a escala media, caracterizadas por fluctuaciones de forma N y И en TEC, con un período de ~30 min y amplitudes de (0.1-0.2) TECU. La respuesta al EQ diurno del 19 de septiembre fue de dos tipos: perturbaciones a escala pequeña de forma N y И, con un período de ~15 min y amplitudes de (0.1-1.1) TECU; y perturbaciones a escala media de forma N, V, И y M, con un período de ~30 min y amplitudes de (0.1-0.2) TECU. Las conclusiones presentadas para la región mexicana son preliminares, ya que se necesitan más datos estadísticos.

Detalles del artículo

Cómo citar
Melgarejo, A., Sergeeva, M. A., Kazachkina, E., Vesnin, A. M., & Aguilar-Rodriguez, E. (2025). Detection of ionospheric response to earthquakes in Mexico: case study of September 8, 2021 and September 19, 2022. Geofísica Internacional, 64(1), 1367–1378. https://doi.org/10.22201/igeof.2954436xe.2025.64.1.1774
Sección
Artículo

Citas

Afraimovich, E. L., Astafieva, E. I., & Kirushkin, V. V. (2006). Localization of the source of ionospheric disturbance generated during an earthquake. International Journal of Geomagnetism and Aeronomy, 6(2), 1-13.

Afraimovich, E.L., Astafyeva, E.I., Demyanov, V.V., Edemskiy, I.K., Gavrilyuk, N.S., Ishin, A.B., Kosogorov, E.A., Leonovich, L.A., Lesyuta, O.S., Palamartchouk, K.S., Perevalova, N. P., Polyakova, A. S., Smolkov, G. Y., Voeykov, S. V., Yasyukevich, Y, V., & Zhivetiev, I. V. (2013). A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 3. doi: https://doi.org/10.1051/swsc/2013049

Afraimovich, E.L., Perevalova, N.P., Plotnikov, A.V, & Uralov, A.M. (2001). The shock-acoustic waves generated by earthquakes. Annales Geophysicae. 19(4), 395–409. doi: https://doi.org/10.5194/angeo-19-395-2001

Artru J., Ducic, V., Kanamori, H., Lognonné, P., & Murakami, M. (2005). Ionospheric detection of gravity waves induced by tsunamis, Geophysical Journal International, 160(3), 840-848. doi: https://doi.org/10.1111/j.1365-246X.2005.02552.x

Astafyeva, E. (2019). Ionospheric detection of natural hazards. Reviews of Geophysics, 57(4), 1265–1288. doi: https://doi.org/10.1029/2019RG000668

Astafyeva, E., Heki, K., Kiryushkin, V., Afraimovich, E., & Shalimov, S. (2009). Two mode long-distance propagation of coseismic ionosphere disturbances. Journal of Geophysical Research, 114(A10). doi: https://doi.org/10.1029/2008JA013853

Borchevkina, O.P., & Karpov, I.V. (2018). Observations of variations in total electron content in the solar terminator region in the ionosphere, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 15(1), 299–305. doi: https://doi.org/10.21046/2070-7401-2018-15-1-299-305

Borchevkina, O.P., Adamson, S.O., & Dyakov, Y.A. et al. (2021). The influence of tropospheric processes on disturbances in the D and E ionospheric layers. Atmosphere, 12(9), 1116. doi: https://doi.org/10.3390/atmos12091116

Bravo, M., Benavente, R., Foppiano, A., Urra, B., & Ovalle, E. (2022). Traveling Ionospheric Disturbances observed over South America after lithospheric events: 2010–2020. Journal of Geophysical Research: Space Physics, 127(4). doi: https://doi.org/10.1029/2021JA030060

Cabral-Cano, E., Pérez-Campos, X., Márquez-Azúa, B., Sergeeva, M.A., Salazar-Tlaczan, L., DeMets, C., Adams, D., Galetzka, J., Hodgkinson, K., Feaux, K., Serra, Y. L., Mattioli, G. S., & Miller, M. (2018). TLALOCNet: A Continuous GPS-Met Backbone in Mexico for Seismotectonic, and Atmospheric Research. Seismological Research Letters. 89(2A), 373–381. doi: https://doi.org/10.1785/0220170190

Calais, E. & Minster, B. (1995). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake. Geophysical Research Letters. 22(9), 1045-1048. doi: https://doi.org/10.1029/95GL00168

Cander, L.R. (2019) Ionospheric Space Weather. Springer Geophysics. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-99331-7

Davies, K. (1965). Ionospheric radio propagation. US Department of Commerce, National Bureau of Standards.

Davies, K., & Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. Journal of Geophysical Research, 70(9), 2251– 2253. doi: https://doi.org/10.1029/JZ070i009p02251

Ducic, V., Artru, J., & Longnonne, P. (2003). Ionospheric remote sensing of the Denali Earthquake Rayleigh surface wave. Geophysical Research Letters, 30(18). doi: https://doi.org/10.1029/2003GL017812

Edemskiy, I. K., & Yasyukevich, A. S. (2018). Observing wave packets generated by solar terminator in TEC during typhoons. Solar-Terrestrial Physics, 4(2), 33-40. doi: https://doi.org/10.12737/stp-42201806

Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., & Barros, D. (2018). Medium‐scale traveling ionospheric disturbances observed by detrended total electron content maps over Brazil. Journal of Geophysical Research: Space Physics, 123(3), 2215-2227. doi: https://doi.org/10.1002/2017JA025021

Gautam, P. K., Chauhan, V., Sathyaseelan, R., Kumar, N., & Pappachen, J. P. (2018). Co-seismic ionospheric GPS-TEC disturbances from different source characteristic earthquakes in the Himalaya and the adjoining regions. NRIAG Journal of Astronomy and Geophysics. 7(2), 237-246. doi: https://doi.org/10.1016/j.nrjag.2018.05.009

Golubkov, G.V., Adamson, S.O., & Borchevkina, O.P. et al. (2022). Coupling of Ionospheric Disturbances with Dynamic Processes in the Troposphere. Russian Journal of Physical Chemistry B, 16(3), 508–530. doi: https://doi.org/10.1134/S1990793122030058

Gonzalez-Esparza, J. A., Sergeeva, M. A., Corona-Romero, P., Mejia-Ambriz, J.C., Gonzalez, L.X., V. De la Luz, Aguilar-Rodriguez, E., Rodriguez, M., & Romero-Hernández, E. (2018). Space weather events, hurricanes, and earthquakes in Mexico in September 2017. Space Weather, 16(12), 2038–2051. doi: https://doi.org/10.1029/2018SW001995

Grzesiak, M., & Świątek, A. (2012). Solar terminator-related ionosphere derived from GPS TEC measurements: a case study. Acta Geophysica, 60, 1224-1235. doi: https://doi.org/10.2478/s11600-011-0048-7

He, L., & Heki, K. (2017). Ionospheric anomalies immediately before Mw7.0–8.0 earthquakes, J. Geophys. Res. Space Physics, 122, 8659–8678. doi:10.1002/2017JA024012

Heki, K., & Ping, J. (2005). Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters, 236(3-4), 845-855. doi: https://doi.org/10.1016/j.epsl.2005.06.010

Hocke, K. & Schlegel, K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Annales Geophysicae, 14, 917–940. doi: https://doi.org/10.1007/s00585-996-0917-6

Iglesias, A., Singh, S.K., Castro‐Artola, O., Pérez‐Campos, X., Corona‐Fernandez, R.D. Santoyo, M.A., Espíndola, V.H., Arroyo, D. & Franco, S.I. (2022). A Source Study of the Mw7.0 Acapulco, Mexico, Earthquake of 8 September 2021. Seismological Research Letters, 93(6), 3205–3218. doi: https://doi.org/10.1785/0220220124

Jin, S., Jin, R., Liu, X., Jin, S., Jin, R., & Liu, X. (2019). Tsunami Ionospheric Disturbances. En A. Shuanggen Jin, R. Jin, X. Liu (Eds.), GNSS Atmospheric Seismology: Theory, Observations and Modeling (pp.211-244) Springer Singapore. doi: https://doi.org/10.1007/978-981-10-3178-6_12

Jin, S., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews, 147, 54-64. doi: https://doi.org/10.1016/j.earscirev.2015.05.003

Kazimirovsky, E.S., Kokourov, V.D., & Vergasova, G.V. (2006). Dynamical climatology of the upper mesosphere, lower thermosphere and ionosphere. Surveys Geophysics. 27, 211–255. doi: https://doi.org/10.1007/s10712-005-3819-3

Kelly, M.C. (2009). The Earth's Ionosphere: Plasma Physics and Electrodynamics, (2a ed.) Academic Press (Elsevier), San Diego, CA USA.

Kong, J., Yao, Y., & Zhou, C. et al. (2018). Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake. Journal of Geodesy, 92, 1255–1266. doi: https://doi.org/10.1007/s00190-018-1117-3

Laštovička, J. (2006). Forcing of the ionosphere by waves from below. Journal of Atmospheric and Solar-Terrestrial Physics, 68(3-5), 479-497. https://doi.org/10.1016/j.jastp.2005.01.018

Liu, C., Lay, T., Bai, Y., He, P., & Xiong, X. (2023). Coseismic Slip Model of the 19 September 2022 M w 7.6 Michoacán, Mexico, Earthquake: A Quasi‐Repeat of the 1973 Mw 7.6 Rupture. The Seismic Record, 3(2), 57-68. doi: https://doi.org/10.1785/0320220042

Liu, J. Y., Tsai, H. F., Lin, C. H., Kamogawa, M., Chen, Y. I., Lin, C. H., Huang, B. S., Yu, S. B., & Yeh, Y. H. (2010). Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake. Journal of Geophysical Research, 115(A8), A08303, doi: https://doi.org/10.1029/2009JA014943

Lognonné, P. (2009). Seismic waves from atmospheric sources and atmospheric/ionospheric signatures of seismic waves. En A. Le Pichon, A., Blanc, E., Hauchecorne, A. (Eds) Infrasound Monitoring for Atmospheric Studies, (pp. 281-304). Springer, Dordrecht. doi: https://doi.org/10.1007/978-1-4020-9508-5_10

Lognonné, P., Artru, J., Garcia, R., Crespon, F., Ducic, V., Jeansou, E., Occhipinti, G., Helbert, J., Moreaux, G., & Godet, P. E. (2006). Ground-based GPS imaging of ionospheric post-seismic signal, Planetary and Space Science, 54(5), 528-540. doi: https://doi.org/10.1016/j.pss.2005.10.021

Melgarejo-Morales, A., Vazquez-Becerra, G.E., Millan-Almaraz, J. R., Martinez-Felix, C.A., & Munawar, S. (2023). Applying support vector machine (SVM) using GPS-TEC and Space Weather parameters to distinguish ionospheric disturbances possibly related to earthquakes. Advances in Space Research. 72(10), 4420-4434. doi: https://doi.org/10.1016/j.asr.2023.08.028

Oikonomou, C., Haralambous, H., Pulinets, S., Khadka, A., Paudel, S. R., Barta, V., Muslim, B., Kourtidis, K., Karagioras, A., & Inyurt, S. (2020). Investigation of Pre-Earthquake Ionospheric and Atmospheric Disturbances for Three Large Earthquakes in Mexico. Geosciences, 11(1), 16. doi: https://doi.org/10.3390/geosciences11010016

Peltier, W.R., Hines, C.O. (1976). On the possible detection of tsunamis by a monitoring of the ionosphere. Journal of Geophysical Research, 81(12), 1995-2000, doi: https://doi.org/10.1029/JC081i012p01995

Perevalova, N.P., & Ishin, A.B. (2011) Effects of tropical cyclones in the ionosphere from data of sounding by GPS signals. Izvestiya Atmospheric and Oceanic Physics, 47, 1072–1083. doi: https://doi.org/10.1134/S000143381109012X

Perevalova, N.P., Sankov, V. A., Astafyeva, E.I., & Zhupityaeva, А.S. (2014). Threshold magnitude for Ionospheric TEC response to earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 108, 77-90. doi: https://doi.org/10.1016/j.jastp.2013.12.014

Perevalova, N.P., Shestakov, N.V., Voeykov, S.V., Takahashi, H., & Guojie, M. (2015). Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophysical Research Letters, 42(16), 6535–6543. doi: https://doi.org/10.1002/2015GL064792

Pérez-Campos, X., Espíndola, V.H., Pérez, J., Estrada, J.A., Monroy, C.C., Bello, D., González-López, A., Gonzalez Avila, D., Contreras Ruiz Esparza, M.G., Maldonado, R., & et al. (2018). The Mexican National Seismological Service: An Overview. Seismological Research Letters, 89(2A), 318-323. doi: https://doi.org/10.1785/0220170186

Rabinovich, A.B., & Eblé, M.C. (2015). Deep ocean measurements of tsunami waves. Pure and Applied Geophysics. 172, 3281–3312. doi: https://doi.org/10.1007/s00024-015-1058-1

Ramírez-Rojas, A., Flores-Márquez, E.L., Vargas, C.A. (2023). Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022. Entropy, 25(5), 799. doi :https://doi.org/10.3390/e25050799

Rolland, L., Vergnolle, M., Nocquet, J.-M., Sladen, A., Dessa, J.X. Tavakoli, F., Nankali, H.R. & Cappa, F. (2013). Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw7.1, dip-slip Van earthquake, Eastern Turkey. Geophysical Research Letters. 40(11), 2518-2522, doi: https://doi.org/10.1002/grl.50544

Sergeeva, M.A., Demyanov, V.V., Maltseva, O.A., Mokhnatkin, A., Rodriguez-Martinez, M., Gutierrez, R., Vesnin, A.M., Gatica-Acevedo, V.J., Gonzalez-Esparza, J.A., Fedorov, M.E., Ishina, T. V., Pazos, M., Gonzalez, L.X., Corona-Romero, P., Mejia-Ambriz, J.C., Gonzalez-Aviles, J.J., Aguilar-Rodriguez, E., Cabral-Cano, E., Mendoza, B., Romero-Hernandez, E., Caraballo, R., & Orrala-Legorreta, I.D. (2021). Assessment of Morelian Meteoroid Impact on Mexican Environment. Atmosphere. 12, 185. doi: https://doi.org/10.3390/atmos12020185

Sergeeva, M.A., Maltseva, O.A., Vesnin, A.M., Blagoveshchensky, D.V., Gatica-Acevedo, V.J., Gonzalez-Esparza, J.A., Chernov, A.G., Orrala-Legorreta, I.D., Melgarejo-Morales, A., & Gonzalez, L.X.; et al. (2023). Solar Flare Effects Observed over Mexico during 30–31 March 2022. Remote Sens. 15, 397. doi: https://doi.org/10.3390/rs15020397

Shi, K., Guo, J., & Liu, X. et al. (2020). Seismo-ionospheric anomalies associated with Mw 7.8 Nepal earthquake on 2015 April 25 from CMONOC GPS data. Geosciences Journal 24, 391–406. doi: https://doi.org/10.1007/s12303-019-0038-3

Singh, S.K., Iglesias, A., Arroyo, D., Pérez-Campos X., Ordaz, M., Mendoza, C., Corona-Fernández, R.D., Rivera, L.V., Espíndola, H., González-Ávila, D., Martínez-López, R., Castro-Artola, O., Santoyo, M.A., & S. I. Franco; A Seismological Study of the Michoacán-Colima, Mexico, Earthquake of 19 September 2022 (Mw7.6). Geofísica Internacional, 62(2) 445-465. doi: https://doi.org/10.22201/igeof.2954436xe.2023.62.2.1453

Servicio Mareográfico Nacional. (2021). Reporte preliminar: registro en las estaciones del Servicio Mareográfico Nacional del tsunami producido por el sismo de magnitud 7.1 ocurrido en Acapulco, Guerrero, Boletín del Servicio Mareográfico Nacional del Instituto de Geofísica de la Universidad Nacional Autónoma de México, 1-15.

Servicio Mareográfico Nacional. (2022). Reporte final: Registro en las estaciones del Servicio Mareográfico Nacional del tsunami producido por el sismo de magnitud 7.7 ocurrido en Michoacán, Boletín del Servicio Mareográfico Nacional del Instituto de Geofísica de la Universidad Nacional Autónoma de México, 1-18

Somsikov, V.M. (2011). Solar terminator and dynamic phenomena in the atmosphere: A review. Geomagn. Aeron. 51, 707-719. doi: https://doi.org/10.1134/S0016793211060168

Sripathi, S., Singh, R., Tiwari, P., & Kumar, M. R. (2020). On the co-seismic ionospheric disturbances (CIDs) in the rapid run ionosonde observations over Allahabad following Mw 7.8 Nepal Earthquake on April 25, 2015. Journal of Geophysical Research: Space Physics. 125. doi: https://doi.org/10.1029/2019JA027001

Servicio Sismológico Nacional (2021). Reporte especial. Sismo del 7 de septiembre de 2021, guerrero (M 7.1), Servicio Sismológico Nacional, Instituto de Geofísica, UNAM, México. http://www.ssn.unam.mx/sismicidad/reportes-especiales/2021/SSNMX_rep_esp_20210907_Guerrero_M71.pdf

Servicio Sismológico Nacional (2022). Reporte especial. Sismo del 19 de septiembre de 2022, Michoacán (M 7.7), 2022. Servicio Sismológico Nacional, Instituto de Geofísica, UNAM, México. http://www.ssn.unam.mx/sismicidad/reportes-especiales/2022/SSNMX_rep_esp_20220919_Michoacan_M74.pdf

Yasyukevich, Y.V., Kiselev, A.V., Zhivetiev, I.V., Edemskiy, I.K., Syrovatskii, S.V., Maletckii, B.M., & Vesnin, A.M. (2020). SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 24, 69. doi: https://doi.org/10.1007/s10291-020-00983-2

Zaytsev, O., Tsukanova, E., Rabinovich, A.B., Thomson, R.E. (2023). The Michoacán Tsunami of 19 September 2022 on the Coast of Mexico: Observations, Spectral Properties and Modelling. Water. 15, 164. doi: https://doi.org/10.3390/w15010164

Zhang, Y., Liu, X., Guo, J., Shi, K., Zhou, M., & Wang, F. (2021). Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw 7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere. 12, 83. doi: https://doi.org/10.3390/atmos12010083

Datos de publicación

Metric
Este artículo
Otros artículos
Revisores/as por pares 
2
2,4

Perfil evaluadores/as  N/D

Declaraciones de autoría

Declaraciones de autoría
Este artículo
Otros artículos
Disponibilidad de datos 
N/D
16%
Financiación externa 
N/D
32%
Conflictos de intereses 
N/D
11%
Metric
Esta revista
Otras revistas
Artículos aceptados 
2%
33%
Días para la publicación 
356
145

Indexado en

Editor y equipo editorial
Perfiles
Sociedad académica 
Geofísica Internacional