Determination of Anomaly Source Border Using Reweighting Focusing Inversion of Two-Dimensional Gravity Horizontal Gradient Data and Conventional Edge Detection Methods (Case Study: A Chromite Mass in Sabzevar, Iran)

Contenido principal del artículo

Mahsa Kabiri
Zohreh Sadat Riazi Rad

Resumen

Existen numerosos métodos para detectar el borde de la gravedad y la fuente de anomalía del campo magnético, la mayoría de los cuales se basan en la combinación de gradientes horizontales y verticales de primer y segundo orden del campo potencial. Los métodos de detección de bordes basados en gradientes y otros métodos determinan los límites de la fuente de anomalías en la superficie del suelo. En el presente estudio, se utilizó un método de inversión de enfoque de reponderación lineal para detectar los bordes verticales de una masa subterránea. La ventaja de este método sobre los métodos convencionales es que, mediante el uso de datos de gradiente horizontal de gravedad en el método de inversión de enfoque de reponderación, podemos detectar las fuentes de anomalías del subsuelo. La eficiencia del método de inversión de enfoque de reponderación lineal para dos conjuntos de datos de gradiente horizontal de gravedad se evaluó en dos modelos sintéticos (ruidoso y silencioso). La distribución de densidad del subsuelo obtenida del análisis de los modelos sintéticos mediante este método de inversión estimó bien la ubicación subterránea de los bordes más lejanos de la fuente de la anomalía. Este método se utiliza para detectar los bordes subterráneos de una masa de cromita en Sabzevar. Además, para comparar y validar los resultados, se utilizaron tres filtros de fase locales convencionales, a saber, la señal analítica, el ángulo de inclinación y el diferencial horizontal total, para detectar el borde de la fuente de anomalía. Los resultados obtenidos de varios métodos muestran una conformidad aceptable en la detección de bordes de masa de cromita. Según el análisis realizado, la profundidad de los bordes verticales del subsuelo más lejanos osciló entre 5 y 10 metros, y la expansión horizontal más alta fue de alrededor de 26 metros.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
372
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Detalles del artículo

Cómo citar
Kabiri, M., & Sadat Riazi Rad, Z. (2025). Determination of Anomaly Source Border Using Reweighting Focusing Inversion of Two-Dimensional Gravity Horizontal Gradient Data and Conventional Edge Detection Methods (Case Study: A Chromite Mass in Sabzevar, Iran). Geofísica Internacional, 64(2), 1543–1561. https://doi.org/10.22201/igeof.2954436xe.2025.64.2.1790
Sección
Artículo
Biografía del autor/a

Zohreh Sadat Riazi Rad, Islamic Azad University, Faculty of Basic Science, Department of Geology, Chaluos, Iran

Profesor Asistente Departamento de Geología, Facultad de Ciencias Básicas, Rama Chaluos, Universidad Islámica Azad, Chaluos, IránAssistant

Citas

Aghajani H. (2013). Conducting survey and gravimetric studies on the eastern chromite zone of Sabzevar. Research project, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology.

Alp H., Albora A. M., Tur H. (2011). A view of tectonic structure and gravity anomalies of Hatay Region southern Turkey using wavelet analysis. Journal of Applied Geophysics, 75(3), 498-505. doi: https://doi.org/10.1016/j.jappgeo.2011.07.004 DOI: https://doi.org/10.1016/j.jappgeo.2011.07.004

Baroz J., Macaudiere J., Montigny R., Noghreyan M., Ohnenstetter M., Rocci G.A. (1984). ‎Ophiolites and related formations in the central part of the Sabzevar (Iran) and possible ‎geotectonic reconstructions‎. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 168(2-3), 358-388. doi: https://doi.org/10.1127/njgpa/168/1984/358 DOI: https://doi.org/10.1127/njgpa/168/1984/358

Cooper G. R. J; Cowan D. R. (2006), Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10), 1585-1591. doi: https://doi.org/10.1016/j.cageo.2006.02.016 DOI: https://doi.org/10.1016/j.cageo.2006.02.016

Cooper G. R. J. (2009). Balancing images of potential-field data. Geophysics, 74(3), L17-L20. doi: https://doi.org/10.1190/1.3096615 DOI: https://doi.org/10.1190/1.3096615

Cooper G. R. J., Cowan D. R. (2011). A generalized derivative operator for potential field data. Geophysical Prospecting, 59(1), 188–194. doi: https://doi.org/10.1111/j.1365-2478.2010.00901.x DOI: https://doi.org/10.1111/j.1365-2478.2010.00901.x

Eshaghzadeh A., Dehghanpour A., Kalantari R. S. (2018). Application of the tilt angle of the balanced total horizontal derivative filter for the interpretation of potential field data. Bollettino di Geofisica Teorica ed Applicata, 59(2), 161-178. doi: https://doi.org/10.4430/bgta0233

Eshaghzadeh A., Hajian A. (2018). 2-D inverse modeling of residual gravity anomalies from Simplegeometric shapes using Modular Feed-forward Neural Network. Annals of Geophysics, 61(1), SE115. doi: https://doi.org/10.4401/ag-7540 DOI: https://doi.org/10.4401/ag-7540

Eshaghzadeh A., Dehghanpour A., Kalantari R. S. (2019). Fault Strike Detection Using Satellite Gravity Data Decomposition by Discrete Wavelets: A Case Study from Iran. Journal of Sciences, Islamic Republic of Iran, 30(1), 41-50. doi: https://doi.org/10.22059/jsciences.2019.69631

Eshaghzadeh A., Kalantari R. S. (2017). Canny edge detection algorithm application for analysis of the potential field map. Earth Science India, 10(3), 108-125. DOI: https://doi.org/10.31870/ESI.10.3.2017.5

Eshaghzadeh A, Sahebari SS (2020) Application of PSO Algorithm based on the mean value of maximum frequency distribution for 2-D inverse modeling of gravity data due to a finite vertical cylinder shape. Quaderni di Geofisica, 162, 1-22. doi: https://doi.org/10.13127/qdg/162 DOI: https://doi.org/10.19111/bulletinofmre.589224

Eshaghzadeh A., Hajian A. (2020). Modelling of Residual Gravity Data due to a Near Surface Dyke Structure Using Damped SVD and Marquardt Inverse Methods. Geofísica Internacional, 61(4), 325-350. doi: https://doi.org/10.22201/igeof.00167169p.2022.61.4.2203 DOI: https://doi.org/10.22201/igeof.00167169p.2022.61.4.2203

Ferreira F. J. F., de Castro L. G., Bongiolo A. B. S., de Souza J., Romeiro M. A. T. (2011). Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: Part II—Application to real data. 81st Annual International Meeting, SEG, Expanded Abstracts. 887–891. DOI: https://doi.org/10.1190/1.3628216

Ferreira F. J. F., de Souza J. A. B. S., Bongiolo de Castro L. G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33–J41. doi: https://doi.org/10.1190/geo2011-0441.1 DOI: https://doi.org/10.1190/geo2011-0441.1

Gerkense A. J. C. (1989). Foundation of exploration Geophysics. Elsevier.

Görgün E., Albora A. M. (2017). Seismotectonic investigation of Biga Peninsula in SW Marmara Region using steerable filter technique, potential field data, and recent seismicity. Pure and Applied Geophysics., 174, 3889-3904. doi: https://doi.org/10.1007/s00024-017-1604-0 DOI: https://doi.org/10.1007/s00024-017-1604-0

Hou Z. L., Wei X. H., Huang D. N. (2015). Fast Density Inversion Solution for Full Tensor Gravity Gradiometry Data Pure and Applied Geophysics, 173(2), 509-523. doi: https://doi.org/10.1007/s00024-015-1129-3 DOI: https://doi.org/10.1007/s00024-015-1129-3

Li Y., Oldenburg D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394–408. doi: https://doi.org/10.1190/1.1443968 DOI: https://doi.org/10.1190/1.1443968

Ma G., Li L. (2012). Edge detection in potential fields with the normalized total horizontal derivative. Computers & Geosciences, 41, 83-87. doi: https://doi.org/10.1016/j.cageo.2011.08.016 DOI: https://doi.org/10.1016/j.cageo.2011.08.016

Mehanee S., Golubev N., Zhdanov M. S. (1998). Weighted regularized inversion of the magnetotelluric data. Society of Exploration Geophysicists, 481-484. doi: https://doi.org/10.1190/1.1820468 DOI: https://doi.org/10.1190/1.1820468

Miller H. G., Singh V. (1994). Potential field tilt—a new concept for the location of potential field sources. Journal of Applied Geophysics, 32(2-3), 213–217. doi: https://doi.org/10.1016/0926-9851(94)90022-1 DOI: https://doi.org/10.1016/0926-9851(94)90022-1

Nabighian M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507-517. doi: https://doi.org/10.1190/1.1440276 DOI: https://doi.org/10.1190/1.1440276

Nabighian M. N. (1974). Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics, 39(1), 85-92. doi: https://doi.org/10.1190/1.1440416 DOI: https://doi.org/10.1190/1.1440416

Oldenburg D. W., Li Y. (2005). 5 Inversion for applied geophysics: A tutorial. Investigations in geophysics, 13, 89-150. doi: https://doi.org/10.1190/1.9781560801719.ch5 DOI: https://doi.org/10.1190/1.9781560801719.ch5

Pilkington M. (1997). 3-D magnetic imaging using conjugate gradients. Geophysics, 62(4), 1132–1142. doi: https://doi.org/10.1190/1.1444214 DOI: https://doi.org/10.1190/1.1444214

Portniaguine O., Zhdanov M. S. (1999). Focusing geophysical inversion images. Geophysics, 64(3), 874–887. doi: https://doi.org/10.1190/1.1444596 DOI: https://doi.org/10.1190/1.1444596

Portniaguine O., Zhdanov M. S. (2002). 3-D magnetic inversion with data compression and image focusing. Geophysics, 67(5), 1532–1541. doi: https://doi.org/10.1190/1.1512749 DOI: https://doi.org/10.1190/1.1512749

Rezaie M., Moradzadeh A., Nejati A., Aghajani M. (2016). Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos Bidiagonalization method. Pure and Applied Geophysics, 174(1), 359-374. doi: https://doi.org/10.1007/s00024-016-1395-8 DOI: https://doi.org/10.1007/s00024-016-1395-8

Shamsipour P., Marcotte D., Chouteau M. (2012). 3D stochastic joint inversion of gravity and magnetic data. Journal of Applied Geophysics, 79, 27–37. doi: https://doi.org/10.1016/j.jappgeo.2011.12.012 DOI: https://doi.org/10.1016/j.jappgeo.2011.12.012

Tai-Han W., Da-Nian H., Guo-Qing M., Zhao-Hai M., Ye L. (2017). Improved preconditioned conjugate gradient algorithm and application in a 3D inversion of gravity-gradiometry data. Applied Geophysics, 14, 301–313. doi: https://doi.org/10.1007/s11770-017-0625-x DOI: https://doi.org/10.1007/s11770-017-0625-x

Tian Y., Ke K., Wang Y. (2018). A Folding Calculation Method Based on the Preconditioned Conjugate Gradient Inversion Algorithm of Gravity Gradient Tensor. Pure and Applied Geophysics, 176, 215-234. doi: https://doi.org/10.1007/s00024-018-1965-z DOI: https://doi.org/10.1007/s00024-018-1965-z

Tikhonov A. N., Arsenin V. Y. (1977). Solution of Ill-Posed Problems. V. H. Winston and Sons.

Verduzco B., Fairhead J. D., Green C. M., Mackenzie C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116–119. doi: https://doi.org/10.1190/1.1651454 DOI: https://doi.org/10.1190/1.1651454

Wijns C., Perez C., Kowalczyk P. (2005). Theta map: Edge detection in magnetic data. Geophysics, 70(4), L39–L43. doi: https://doi.org/10.1190/1.1988184 DOI: https://doi.org/10.1190/1.1988184

Yuan Y., Danian H., Qinglu Y., Pengyu L. (2014). Edge detection of potential field data with improved structure tensor methods. Journal of Applied Geophysics, 108, 35-42. doi: https://doi.org/10.1016/j.jappgeo.2014.06.013 DOI: https://doi.org/10.1016/j.jappgeo.2014.06.013

Zhen-Long H., Da-Nian H., En-De W., Hao C. (2019). 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm. Applied Geophysics, 16, 141–152. doi: https://doi.org/10.1007/s11770-019-0763-4 DOI: https://doi.org/10.1007/s11770-019-0763-4