A preliminary thermal model of the mexican seismovolcanic belt as a result of subduction

Contenido principal del artículo

E. A. Lubimova
RM. Prol

Resumen

Se desarrolla un modelo término de la faja volcánica mexicana. Los datos geofísicos y los datos geológicos se toman en cuenta en el desarrollo de este modelo (generación de calor, flujo de calor, volcanismo, patrón de falla y parámetros geométricos de la supuesta zona de Zavaritsk y Benioff) y además se supone una fuente adicional de calor debida a fricción. Se introduce en la discusión un transporte de calor efectivo e incrementado de acuerdo con la región estudiada altamente fracturada. Con el empleo de este modelo puede determinarse la distribución de la temperatura según el flujo calórico profundo y superficial. El perfil calculado para Acapulco-Tuxpan muestra que el flujo de calor aumenta desde un valor muy bajo (33.3 mW /m2) cerca de la trinchera, hasta valores de 58.2 mW /m2 )en las áreas geotérmicamente activas y hasta J 08 mW/m2 , en la región de reciente volcanismo.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
15713
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Detalles del artículo

Cómo citar
Lubimova, E. A., & Prol, R. (1979). A preliminary thermal model of the mexican seismovolcanic belt as a result of subduction. Geofísica Internacional, 18(2), 113–127. https://doi.org/10.22201/igeof.00167169p.1979.18.2.890
Sección
Artículo

Citas

ANDERSON, R. N., S. UYEDA, A. MIYASHIRO, 1976. Geophysical and geochemical constraints at converging plate boundaries – Part I: Dehydration in the downgoing slab. Geophys, J. Royal Astron. Soc. 44, 333-357. DOI: https://doi.org/10.1111/j.1365-246X.1976.tb03660.x

ANDREWS, D. J., N. J. SLEEP, 1974. Numerical modelling of tectonic flow behind island arcs. Geophys. J. Royal Astron, Soc. 38, 237-251. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb04118.x

ATWATER, T., 1970. lmplications of plate· tectonics for the· Cenozoic Tectonic Evolution of Western North America. Geol. Soc. Am. Bull 81, 3513-3536. DOI: https://doi.org/10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2

BEREZIN, I. S. and N. P. ZHIDKOV, 1962. Metodi vichisleniy. T. II (Numerical methods). Moscow, Fizmatgiz Press. (In Russian).

BLACKWELL, D. D., J. ZIAGOS, F. MOOSER, 1977. Heat flow and the thermal effects of subduction in Southern Mexico EOS Trans, AGU. 58, 1233.

FISHER, R. L. 1961. Middle America Trench: Topography and Structure. Geol. Soc. Am. Bull. 72, 703-720. DOI: https://doi.org/10.1130/0016-7606(1961)72[703:MATTAS]2.0.CO;2

FUJISAWA, H. 1968. Temperature and discontinuities in the continuous layer within the Earth’s mantle. Geophysical application of the olivine-spinel transition in the Mg2 SiO4 – Fe2 SiO4 system. J. Geophys. Res. 73, 3281-3294. DOI: https://doi.org/10.1029/JB073i010p03281

GLEBOVITSKY, V. A., 1973. Problemi evolutsii metamorphicheskikh protsessov. v podvizhnikh oblasty akh. (Evolution problems of metamorphic processes in active regions). Leningrad. Nauka, 128 pp. (In Russian).

Hanus, V. and J. VANEK, 1977. Subduction of the Cocos plate and deep fractures zones of Mexico. Geofísica Internacional, 17 : 14-53. DOI: https://doi.org/10.22201/igeof.00167169p.1978.17.1.974

HASEBE, K., N. FUJII, S. UYEDA, 1970. Thermal processes under island arcs. Tecnophysics. 10, 335-355. DOI: https://doi.org/10.1016/0040-1951(70)90114-9

JISCHKE, M. C., 1975. On the dynamics of descending lithospheric plates and slip zones. J. Geophys. Res. 35, 4809-4813. DOI: https://doi.org/10.1029/JB080i035p04809

LUBIMOV, A. E. and V. M. LUBOSHITS, 1975. Vliyanic termicheskikh neodnorodnostey kori na teplovoy polok. (Crustal thermal inhomogeneities influence on the heat flow). In “Issledo vaniya teplovogo i elektromagnitnogo poley v SSSR.” Moscow. Nauka Press. (In Russian).

LUBIMOV A. F., A., V. M. LUBOSHITS, V. N. NIKITINA, 1976. Effect of contrasts in the physical properties of: the heat flow and electromagnetic profiles. In “Geolectric and Geothermal studies (East-Central Europe, Soviet Asia)”. KAPG Geophysical Monograph, Ed, A, Adam. Budapest.

LUBOSHITS, V. M. 1976. Chislennoe resher-ie pryamoy zadachi geotermiki. (Numerical solution of the geothermal direct problem) Izv. AN SSSR. Fizika Zemli No. 9 (In Russian).

LUBOSHITS, V. M. 1978. Chislennoe reshenie pryamikh zadach geotermiki elektrorazvedki. (Numerical solutions of direct problems of geothermics and electrical methods) Avtoreferat, kand, dicc. (Ph. D. thesis). (In Russian)

McKENZIE, D. P. and J. G. SCLATER. 1968. Heat flow inside the island arcs of the Northwestern Pacific. J. Geophys. Res. 73, 3173-3179. DOI: https://doi.org/10.1029/JB073i010p03173

McKENZIE, D. P., J. G. SCLATER. 1969. Heat flow in the Eastern Pacific and sea floor spreading. Bull Volcanol., 33, 101-118. DOI: https://doi.org/10.1007/BF02596711

McKENZIE, D. P., J. ROBERTS, N. O. WEISS, 1973. Numerical models of convection in the Earth’s mantle. Tectonophysics 19, 89-103. DOI: https://doi.org/10.1016/0040-1951(73)90034-6

MINEAR, J. W., M. N. TOKSÖZ, 1970. Thermal regime of a downgoing slab. Tectonophysics 10, 367-390. DOI: https://doi.org/10.1016/0040-1951(70)90116-2

MIYASHIRO, A., 1961. Evolution of metamorphic belts, J. Petrol. 2, 277-311. DOI: https://doi.org/10.1093/petrology/2.3.277

MOLNAR, P. and L. R. SYKES, 1969. Tectonics of the Caribbean and Middle America regions from focal mechanism and seismicity. Geol. Soc. Am. Bull. 80 1639-1684. DOI: https://doi.org/10.1130/0016-7606(1969)80[1639:TOTCAM]2.0.CO;2

MONGES C., J. and M. MENA J., 1973. Trabajos gravimétricos en el Eje Neovolcánico. Anales del Instituto de Geofísica. (Méx.), 18/19, pp. 195-208.

MOOSER, F., 1972. The Mexican Volcanic Belt: structure and tectonics. Geofísica Internacional. 12 : 55-70. DOI: https://doi.org/10.22201/igeof.00167169p.1972.12.2.1024

OXBURGH, E. R., D. L. TURCOTTE, 1971. Origin of paired metamorphic belts and crustal dilation in Island Arc regions. J. Geophys. Res. 76, 1315-1327. DOI: https://doi.org/10.1029/JB076i005p01315

PAL., S., M. GARCÍA, D. J. TERRELL, 1976. Radioactivity and heat sources in the Central Depression of Chiapas State Mexico, Geofísica Internacional. 16 : 185-196. DOI: https://doi.org/10.22201/igeof.2954436xe.1976.16.3.1496

ROSS, D. A. and G. G. SHOR, Jr., 1965. Reflection profiles across the Middle America Trench . J. Geophys. Res. 70. 5551-5572. DOI: https://doi.org/10.1029/JZ070i022p05551

SHUBERT, D. H., 1972. Low-velocity layer in the upper mantle, beneath México. Geol. Soc. Am. Bull. 83, 3475-3478. DOI: https://doi.org/10.1130/0016-7606(1972)83[3475:LLITUM]2.0.CO;2

TOKSÖZ, M. N., J. W. MINEAR. B. R. JULIAN, 1971. Temperature field and geophysical effects of a dowgoing slab. J. Geophys. Res. 76, 1113-1138. DOI: https://doi.org/10.1029/JB076i005p01113

TURCOTTE, D. L., and E. R. OXBURGH, 1969. A fluid theory of the deep structure of dip-slip fault zones. Phys. Earth Planet. Int. 1. 381-386. DOI: https://doi.org/10.1016/0031-9201(68)90034-4

TURCOTTE, D. L., and G. SCHUBERT, 1973. Frictional heating of the descending lithosphere. J. Geophys. Res. 78, 5876-5886. DOI: https://doi.org/10.1029/JB078i026p05876

TYKHONOV, A. N. and A. A. SAMARSKIY, 1972. Uravnenya matematicheskoy fiziki. (Mathematical physics equations). Moscow. Nauka press. (In Russian).

YUEN, D. A., L. FLEITOUT, G. SCHUBERT, C. FROIDEVAUX, 1978. Shear deformation zones along major transform faults and subducting slabs. Geophys. J. Royal Astron. Soc. 54, 93-120. DOI: https://doi.org/10.1111/j.1365-246X.1978.tb06758.x