A preliminary thermal model of the mexican seismovolcanic belt as a result of subduction
Contenido principal del artículo
Resumen
Se desarrolla un modelo término de la faja volcánica mexicana. Los datos geofísicos y los datos geológicos se toman en cuenta en el desarrollo de este modelo (generación de calor, flujo de calor, volcanismo, patrón de falla y parámetros geométricos de la supuesta zona de Zavaritsk y Benioff) y además se supone una fuente adicional de calor debida a fricción. Se introduce en la discusión un transporte de calor efectivo e incrementado de acuerdo con la región estudiada altamente fracturada. Con el empleo de este modelo puede determinarse la distribución de la temperatura según el flujo calórico profundo y superficial. El perfil calculado para Acapulco-Tuxpan muestra que el flujo de calor aumenta desde un valor muy bajo (33.3 mW /m2) cerca de la trinchera, hasta valores de 58.2 mW /m2 )en las áreas geotérmicamente activas y hasta J 08 mW/m2 , en la región de reciente volcanismo.
Publication Facts
Reviewer profiles N/D
Author statements
- Academic society
- Geofísica Internacional
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
ANDERSON, R. N., S. UYEDA, A. MIYASHIRO, 1976. Geophysical and geochemical constraints at converging plate boundaries – Part I: Dehydration in the downgoing slab. Geophys, J. Royal Astron. Soc. 44, 333-357. DOI: https://doi.org/10.1111/j.1365-246X.1976.tb03660.x
ANDREWS, D. J., N. J. SLEEP, 1974. Numerical modelling of tectonic flow behind island arcs. Geophys. J. Royal Astron, Soc. 38, 237-251. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb04118.x
ATWATER, T., 1970. lmplications of plate· tectonics for the· Cenozoic Tectonic Evolution of Western North America. Geol. Soc. Am. Bull 81, 3513-3536. DOI: https://doi.org/10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2
BEREZIN, I. S. and N. P. ZHIDKOV, 1962. Metodi vichisleniy. T. II (Numerical methods). Moscow, Fizmatgiz Press. (In Russian).
BLACKWELL, D. D., J. ZIAGOS, F. MOOSER, 1977. Heat flow and the thermal effects of subduction in Southern Mexico EOS Trans, AGU. 58, 1233.
FISHER, R. L. 1961. Middle America Trench: Topography and Structure. Geol. Soc. Am. Bull. 72, 703-720. DOI: https://doi.org/10.1130/0016-7606(1961)72[703:MATTAS]2.0.CO;2
FUJISAWA, H. 1968. Temperature and discontinuities in the continuous layer within the Earth’s mantle. Geophysical application of the olivine-spinel transition in the Mg2 SiO4 – Fe2 SiO4 system. J. Geophys. Res. 73, 3281-3294. DOI: https://doi.org/10.1029/JB073i010p03281
GLEBOVITSKY, V. A., 1973. Problemi evolutsii metamorphicheskikh protsessov. v podvizhnikh oblasty akh. (Evolution problems of metamorphic processes in active regions). Leningrad. Nauka, 128 pp. (In Russian).
Hanus, V. and J. VANEK, 1977. Subduction of the Cocos plate and deep fractures zones of Mexico. Geofísica Internacional, 17 : 14-53. DOI: https://doi.org/10.22201/igeof.00167169p.1978.17.1.974
HASEBE, K., N. FUJII, S. UYEDA, 1970. Thermal processes under island arcs. Tecnophysics. 10, 335-355. DOI: https://doi.org/10.1016/0040-1951(70)90114-9
JISCHKE, M. C., 1975. On the dynamics of descending lithospheric plates and slip zones. J. Geophys. Res. 35, 4809-4813. DOI: https://doi.org/10.1029/JB080i035p04809
LUBIMOV, A. E. and V. M. LUBOSHITS, 1975. Vliyanic termicheskikh neodnorodnostey kori na teplovoy polok. (Crustal thermal inhomogeneities influence on the heat flow). In “Issledo vaniya teplovogo i elektromagnitnogo poley v SSSR.” Moscow. Nauka Press. (In Russian).
LUBIMOV A. F., A., V. M. LUBOSHITS, V. N. NIKITINA, 1976. Effect of contrasts in the physical properties of: the heat flow and electromagnetic profiles. In “Geolectric and Geothermal studies (East-Central Europe, Soviet Asia)”. KAPG Geophysical Monograph, Ed, A, Adam. Budapest.
LUBOSHITS, V. M. 1976. Chislennoe resher-ie pryamoy zadachi geotermiki. (Numerical solution of the geothermal direct problem) Izv. AN SSSR. Fizika Zemli No. 9 (In Russian).
LUBOSHITS, V. M. 1978. Chislennoe reshenie pryamikh zadach geotermiki elektrorazvedki. (Numerical solutions of direct problems of geothermics and electrical methods) Avtoreferat, kand, dicc. (Ph. D. thesis). (In Russian)
McKENZIE, D. P. and J. G. SCLATER. 1968. Heat flow inside the island arcs of the Northwestern Pacific. J. Geophys. Res. 73, 3173-3179. DOI: https://doi.org/10.1029/JB073i010p03173
McKENZIE, D. P., J. G. SCLATER. 1969. Heat flow in the Eastern Pacific and sea floor spreading. Bull Volcanol., 33, 101-118. DOI: https://doi.org/10.1007/BF02596711
McKENZIE, D. P., J. ROBERTS, N. O. WEISS, 1973. Numerical models of convection in the Earth’s mantle. Tectonophysics 19, 89-103. DOI: https://doi.org/10.1016/0040-1951(73)90034-6
MINEAR, J. W., M. N. TOKSÖZ, 1970. Thermal regime of a downgoing slab. Tectonophysics 10, 367-390. DOI: https://doi.org/10.1016/0040-1951(70)90116-2
MIYASHIRO, A., 1961. Evolution of metamorphic belts, J. Petrol. 2, 277-311. DOI: https://doi.org/10.1093/petrology/2.3.277
MOLNAR, P. and L. R. SYKES, 1969. Tectonics of the Caribbean and Middle America regions from focal mechanism and seismicity. Geol. Soc. Am. Bull. 80 1639-1684. DOI: https://doi.org/10.1130/0016-7606(1969)80[1639:TOTCAM]2.0.CO;2
MONGES C., J. and M. MENA J., 1973. Trabajos gravimétricos en el Eje Neovolcánico. Anales del Instituto de Geofísica. (Méx.), 18/19, pp. 195-208.
MOOSER, F., 1972. The Mexican Volcanic Belt: structure and tectonics. Geofísica Internacional. 12 : 55-70. DOI: https://doi.org/10.22201/igeof.00167169p.1972.12.2.1024
OXBURGH, E. R., D. L. TURCOTTE, 1971. Origin of paired metamorphic belts and crustal dilation in Island Arc regions. J. Geophys. Res. 76, 1315-1327. DOI: https://doi.org/10.1029/JB076i005p01315
PAL., S., M. GARCÍA, D. J. TERRELL, 1976. Radioactivity and heat sources in the Central Depression of Chiapas State Mexico, Geofísica Internacional. 16 : 185-196. DOI: https://doi.org/10.22201/igeof.2954436xe.1976.16.3.1496
ROSS, D. A. and G. G. SHOR, Jr., 1965. Reflection profiles across the Middle America Trench . J. Geophys. Res. 70. 5551-5572. DOI: https://doi.org/10.1029/JZ070i022p05551
SHUBERT, D. H., 1972. Low-velocity layer in the upper mantle, beneath México. Geol. Soc. Am. Bull. 83, 3475-3478. DOI: https://doi.org/10.1130/0016-7606(1972)83[3475:LLITUM]2.0.CO;2
TOKSÖZ, M. N., J. W. MINEAR. B. R. JULIAN, 1971. Temperature field and geophysical effects of a dowgoing slab. J. Geophys. Res. 76, 1113-1138. DOI: https://doi.org/10.1029/JB076i005p01113
TURCOTTE, D. L., and E. R. OXBURGH, 1969. A fluid theory of the deep structure of dip-slip fault zones. Phys. Earth Planet. Int. 1. 381-386. DOI: https://doi.org/10.1016/0031-9201(68)90034-4
TURCOTTE, D. L., and G. SCHUBERT, 1973. Frictional heating of the descending lithosphere. J. Geophys. Res. 78, 5876-5886. DOI: https://doi.org/10.1029/JB078i026p05876
TYKHONOV, A. N. and A. A. SAMARSKIY, 1972. Uravnenya matematicheskoy fiziki. (Mathematical physics equations). Moscow. Nauka press. (In Russian).
YUEN, D. A., L. FLEITOUT, G. SCHUBERT, C. FROIDEVAUX, 1978. Shear deformation zones along major transform faults and subducting slabs. Geophys. J. Royal Astron. Soc. 54, 93-120. DOI: https://doi.org/10.1111/j.1365-246X.1978.tb06758.x