The use of in situ Gamma-Ray Spectrometry to Assess the Environmental Impacts of Intensive Agriculture in terms of Geochemical Mobility in soil and waters

Contenido principal del artículo

Matheus Felipe Stanfoca Casagrande
César Augusto Moreira
Lucas Moreira Furlan
Vânia Rosolen

Resumen

La concentración y movilidad de metales en la litosfera y la hidrosfera están influenciadas por muchos parámetros físico-químicos y procesos de origen natural y antropogénico, siendo este último responsable de impactos en muchos ecosistemas alrededor del mundo, incluyendo los humedales. Estas zonas de transición, a menudo caracterizadas por la presencia de suelos hídricos, vegetación adaptada y presencia estacional o permanente de agua superficial, suelen estar bajo presión humana en términos de conversión de uso del suelo y contaminación, especialmente en áreas de producción agrícola, donde el exceso de nutrientes/materia orgánica, pesticidas, sales, sedimentos, metales pesados y radionúclidos (provenientes de fertilizantes inorgánicos) pueden alterar sustancialmente el equilibrio ecológico de estos ecosistemas. Por lo tanto, este estudio tuvo como objetivo evaluar el impacto agrícola en un humedal tropical geográficamente aislado en el Cerrado brasileño mediante el análisis de la movilidad geoquímica e interacción entre agua superficial y subterránea a través de espectrometría de rayos gamma in situ y mediciones de conductividad hidráulica. Los resultados demostraron que los márgenes de este humedal, con suelos derivados de diabasa, son uno de los compartimentos más importantes y críticos debido a su capacidad tanto de inmovilización de metales como de infiltración de agua superficial, indicado especialmente por las concentraciones de uranio. El torio, por su parte, se relacionó principalmente con el transporte coluvial desde las pendientes hacia el centro del humedal, corroborado también por zonas de baja conductividad hidráulica como resultado de la compactación del suelo debido al uso de maquinaria agrícola pesada y aumento del flujo de escorrentía. Por lo tanto, la metodología aplicada podría utilizarse como un método inicial de detección rápida en humedales bajo otros contextos climáticos, geológicos y edafológicos, con el fin de evaluar la dinámica hidrogeoquímica local y los impactos de la agricultura.

Detalles del artículo

Cómo citar
Stanfoca Casagrande, M. F., Moreira, C. A., Moreira Furlan, L., & Rosolen, V. (2024). The use of in situ Gamma-Ray Spectrometry to Assess the Environmental Impacts of Intensive Agriculture in terms of Geochemical Mobility in soil and waters. Geofísica Internacional, 63(2), 851–864. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1711
Sección
Artículo
Biografía del autor/a

César Augusto Moreira, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP

Professor at Geology Department - UNESP

Vânia Rosolen, Universidad Estadual Paulista Júlio de Mesquita Filho - UNESP

Professor at Geology Department - UNESP

Citas

Arif, M., Liu, G., Yousaf, B., Ahmed, R., Irshad, S., Ashraf, A., Zia-Ur-Rehman, M., Rashid, MS. (2021). Syn.thesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-a review. Journal of Cleaner Production, 310, 127548. doi: https://doi.org/10.1016/j.jclepro.2021.127548

Becegato, V.A., Ferreira, F.J.F. (2005). Gamaespectrometria, resistividade elétrica e susceptibilidade magnética de solos agrícolas no noroeste do estado do Paraná. Revista Brasileira de Geofísica. 23(4), 371-405. doi: http://dx.doi.org/10.1590/S0102-261X2005000400004

Becegato, V.A., Ferreira, F.J.F., Cabral, J.B.P., Rafaelli Neto, S.L. (2008). Gamma-ray Spectrometry Sensor and Geochemical Prospecting in an Area of Sugar Cane Plantation. Brazilian Archives of Biology and Technology. 51(1), 1-10. doi: http://dx.doi.org/10.1590/S1516-89132008000100001

Blum, W.E.H. (2013). Soil and Land Resources for Agricultural Production: General Trends and Future Scenarios-A Worldwide Perspective. International Soil and Water Conservation Research. 1(3), 1-14. doi: https://doi.org/10.1016/S2095-6339(15)30026-5

Boyle, R.W. (1982). Geochemical prospecting for thorium and uranium deposits. Elsevier Scientific Publishing Company.

Calabrese, E.J., Kostecki, P.T., Dragun, J. (2005). Contaminated Soils, Sediments and Water: Science in the Real World. Springer, Boston.

Casagrande, M.F.S., Bonotto, D.M. (2018). The use of γ-rays analysis by HPGe detector to assess the gross alpha and beta activities in waters. Applied Radiation and Isotopes. 137, 1–11. doi: https://doi.org/10.1016/j.apradiso.2018.02.027

Casagrande, M.F.S., Furlan, L.M., Moreira, C.A., Rosa, F.T.G., Rosolen, V. (2021). Non-invasive methods in the identification of hydrological ecosystem services of a tropical isolated wetland (Brazilian study case). Environmental Challenges. 5, 100233. doi: https://doi.org/10.1016/j.envc.2021.100233

Chu, S.Y.F., Ekström, L.P., Firestone, R.B. (1999). The Lund/LBNL Nuclear Data Search. http://nucleardata.nuclear.lu.se/toi/abouttoi.htm

Conceição, F.T., Bonotto, D.M. (2006a). Dose de exposição radiométrica e composição das rochas sedimentares e ígneas na bacia do Rio Corumbataí. Revista Brasileira de Geofísica. 24(1), 37-48. doi: https://doi.org/10.1590/S0102-261X2006000100003

Conceição, F.T., Bonotto, D.M. (2006b). Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products. Environmental Pollution. 139(2): 232-243. https://doi.org/10.1016/j.envpol.2005.05.014

Eisenbud, M., Gesell, T. (1997). Environmental Radioactivity from Natural, Industrial, and Military Sources. (4a ed.) Academic Press.

Emsley, J. (2001). Nature’s Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press.

Erdi-Krausz, G., Matolin, M., Minty, B., Nicolet, J.P., Reford, W.S., Schetselaar, E.M. (2003). Guidelines for radioelement mapping using gamma-ray spectrometry data. International Atomic Energy Agency (IAEA).

Ferronsky, V.I. (2015). Nuclear Geophysics: Applications in Hydrology, Hydrogeology, Engineering Geology. (1a ed). Springer Cham. doi: https://doi.org/10.1007/978-3-319-12451-3

Fianco, C.B., Vidotti, R.M., Pires, A.C.B. (2014). Phosphorite porspection using ground gamma spectrometry in northeast Goiás state, Brazil. Revista Brasileira de Geofísica, 32(4), 721-733. doi: http://dx.doi.org/10.22564/rbgf.v32i4.540

Furlan, L.M., Ferreira, M.E., Moreira, C.A., Alencar, P.G., Casagrande, M.F.S., Rosolen, V. (2023). Satellite, UAV, and Geophysical Data to Identify Surface and Subsurface Hydrodynamics of Geographically Isolated Wetlands: Understanding an Undervalued Ecosystem at the Atlantic Forest-Cerrado Interface of Brazil. Remote Sensing. 15(7), 1870. doi: https://doi.org/10.3390/rs15071870

Guo, Y., Yang, S. (2016). Heavy metal enrichment in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150 years. Science of the Total Environment, 543(Part A), 105-115. doi: https://doi.org/10.1016/j.scitotenv.2015.11.012

Han, H., Rafiq, M.K., Zhou, T., Xu, R., Mašek, O., Li, X. (2019). A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials. 369, 780-796. doi: https://doi.org/10.1016/j.jhazmat.2019.02.003

Hayashi, M., Van Der Kamp, G., Rosenberry, D.O. (2016). Hydrology of Prairie Wetlands: Understanding the Integrated Surface-Water and Groundwater Processes. Wetlands. 36, 237-254. doi: https://doi.org/10.1007/s13157-016-0797-9

Hoff, R., Rolim, S.S.A., Bastos Neto, A.C. (2004). Mapeamento aerogamaespectrométrico da alteração hidrotermal associada à mineralização no distrito fluorítico de Santa Catarina, Brasil. Revista Brasileira de Geofísica. 22(1), 45-55. doi: https://doi.org/10.1590/S0102-261X2004000100004

Horn, R., Peth, S. (2011). Mechanics of unsaturated soils for agricultural applications. In P. M. Huang, Y. Li & M. E. Sumner (Eds.), Handbook of soil sciences, 2nd. ed. (pp. 1-30). Boca Raton, FL; CRC Press.

Hussain RO, Hussain HH. (2011). Investigation the Natural Radioactivity in Local and Imported Chemical Fertilizers. Brazilian Archives Biololgy and Technology, 54(4), 777-782. doi: https://doi.org/10.1590/S1516-89132011000400018

International Atomic Energy Agency. (1973). Safe Handling of Radionuclides. Safety Series. No.1. International Atomic Energy Agency, Viena.

Isherwood, K.E. (2000). O uso de fertilizantes minerais e o meio ambiente. IFA/UNEP/ANDA.

Kesler, S.E., Simon, A.C. (2015). Mineral resources, economics and the environment, (2a ed). Cambridge, Cambridge University Press.

Köppen W, Geiger R. (1928). Klimate der Erde. Gotha, Verlag Justus Perthes.

Leibowitz, S.G. (2015). Geographically Isolated Wetlands: Why We Should Keep the Term, Wetlands. 35, 997-1003. doi: https://doi.org/10.1007/s13157-015-0691-x

Loureiro, F.E.L., Monte, M.B.M. (2005) Nascimento, M. Fosfato. In: Rochas e minerais industriais: usos e especificações. Rio de Janeiro, RJ, Brasil: Centro de Tecnologia Mineral-Ministério da Ciência e Tecnologia,.

Luko-Sulato, K., Rosa, V.A., Furlan, L.M., Rosolen, V. (2021). Concentration of essential and toxic elements as a function of the depth of the soil and the presence of fluvic acids in a wetland in Cerrado, Brazil. Environmental Monitoring and Assessment, 193, 157. doi: https://doi.org/10.1007/s10661-021-08945-y

Maltby, E. (1988). Global wetlands-history, current status and future. En A. Hook, D.D.; McKee, W.H.; Smith, H.K.; et al. (Eds.) The Ecology and management of wetlands. (pp. 3-14) London: Croom Helm.

Mateo‐Sagasta, J., Marjani Zadeh, S., Turral, H. (2018). More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture. Roma: Food and Agriculture Organization of the United Nations.

Mazzilli, B.P., Máduar, M.F., Campos, M.P. (2013). Radioatividade no meio ambiente e avaliação de impacto radiológico ambiental. São Paulo: Instituto de Pesquisas Energéticas e Nucleares (IPEN).

Mclaughlin, D.L., Kaplan, D.A., Cohen, M.J. (2014). A significant nexus: geographically isolated wetlands influence landscape hydrology. Water Resources Research, 50(9), 7153-7166. doi: https://doi.org/10.1002/2013WR015002

Mikami, S., Sato, S., Hoshide, Y., Sakamoto, R., Okuda, N., Saito, K. (2015). In Situ Gamma Spectrometry Intercomparison in Fukushima, Japan. Japanese journal of health physics, 50(3), 182-188. http://doi.org/10.5453/jhps.50.182

Milani, E. J., Melo, J. H. G., Souza, P. A., Fernandes, L. A., França, A. B. Bacia do Paraná. (2007). Bacia Parana Carta Estratigraf Simples. Boletim de Geociências da Petrobras, 15(2), 265-287.

Mitsch, W.J., Gosselink, G. (2015). Wetlands. (5a ed.) Wiley.

Mussett, A.E.; Khan, M.A. (2000). Looking into the earth: an introduction to geological geophysics. Nova Iorque: Cambridge University Press.

Nardy, A.J.R., Moreira, C.A., Machado, F.B., Luchetti, C.F., Hansen, M.A.F., Rossini, A.J., Barbosa Jr. (2014). Gamma-ray spectrometry signature of Paraná volcanic rocks: preliminar results. Geociencias, 33(2), 216-227.

Olivie-Lauquet, G., Gruau, G., Dia, A., Riou, C., Jaffrezic, A., Henin, O. (2001). Release of trace elements in wetlands: role of seasonal variability. Water Research, 35(4), 943-952. doi: https://doi.org/10.1016/S0043-1354(00)00328-6

Pickup, G., Marks, A. (2000). Identifying large-scale erosion and deposit processes from airbone gamma radiometrics and digital elevation models in a weathered landscape. Earth Surface Processes and Landforms, 25(5), 535-557. doi: https://doi.org/10.1002/(SICI)1096-9837(200005)25:5%3C535::AID-ESP91%3E3.0.CO;2-N

Rains, M.C., Leibowitz, S.G., Cohen, M.J., Creed, I.F., Golden, H.E., Jawitz, J.W., Kalla, P., Lane, C.R., Lang, M.W., Mclaughlin, D.L. (2016). Geographically isolated wetlands are part of the hydrological landscape. Hydrological Process, 30(1), 153-160. doi: https://doi.org/10.1002/hyp.10610

Reinhardt, N., Hermann, L. (2018). Gamma-ray spectrometry as versatile tool in soil science: A critical review. Journal of Plant Nutrition and Soil Science, 182(1), 9-27. doi: https://doi.org/10.1002/jpln.201700447

Reynolds, W.D., Elrick D.E., Topp G.C. (1983). A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water table. Soil Science, 136(4), 250-268.

Ridley, J. (2013). Ore deposit geology. Cambridge University Press. doi: https://doi.org/10.1017/CBO9781139135528

Schneider, R.L., Muhlmann, H., Tommasi, E., Medeiros, R. A., Daemon, R. F., Nogueira, A.A. (1974). Revisão estratigráfica da Bacia do Paraná. In: Congresso Brasileiro De Geologia, 28, Porto Alegre. Anais. Brazil, Porto Alegre: Sociedade Brasileira de Geologia, 1, 41-65.

Schuler, U., Erbe, P., Zarei, M., Rangubpit, W., Surinkum, A., Stahr, K., Herrmann, L. (2011). A gamma-ray spectrometry approach to field separation of illuviation-type WRB reference soil groups in northern Thailand. Journal of Plant Nutrition and Soil Science, 174(4), 536-544. doi: https://doi.org/10.1002/jpln.200800323

Šimíček, D., Bábek, O., Leichmann, J. (2012). Outcrop gamma-ray logging of siliciclastic turbidites: Separating the detrital provenance signal from facies in the foreland-basin turbidites of the Moravo-Silesian basin, Czech Republic. Sedimentary Geology, 261-262, 50-64. doi: https://doi.org/10.1016/j.sedgeo.2012.03.003

Soil Moisture Corp. (2012). Model 2800K1, Guelph Permeameter (Operating Instructions). Santa Bárbara, CA.

Souza, J.L., Ferreira, F.J.F. (2005). Anomalias aerogamaespectrométricas (K, eU e eTh) da quadrícula de Araras (SP) e suas relações com processos pedogenéticos e fertilizantes fosfatados. Revista Brasileira de Geofísica, 23(3), 251-274. doi: https://doi.org/10.1590/S0102-261X2005000300005

Strawn, D.G., Bohn, H.L., O’connor, G.A. (2020). Soil chemistry. (5a ed.). Wiley & Sons.

Tiner, R.W. (2003). Geographically isolated wetlands of the United States. Wetlands, 23, 494-516. doi: https://doi.org/10.1672/0277-5212(2003)023[0494:GIWOTU]2.0.CO;2

Tubeileh, A., Groleau-Renaud, V., Plantureux, S., Guckert, A. (2003). Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system. Soil and Tillage Research. 71(2), 151-161. doi: https://doi.org/10.1016/S0167-1987(03)00061-8

Uddin, M.K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462. doi: https://doi.org/10.1016/j.cej.2016.09.029

Ulbrich, H.H.G.J., Ulbrich, M.N.C., Ferreira, F.J.F., Alves, L.S., Guimarães, G.B., Fruchting, A. (2009). Levantamentos gamaespectrométricos em granitos diferenciados. I: revisão da metodologia e do comportamento geoquímico dos elementos K, Th e U. Geologia USP. Série Científica, 9(1), 33-53. doi: https://doi.org/10.5327/Z1519-874X2009000100003

Umisedo, N.K. (2007). Dose de radiação ionizante decorrente do uso de fertilizantes agrícolas. [Tese de doutorado]. Faculdade de Saúde Pública da Universidade de São Paulo.

United Nations Scientific Committee on the Effects of Atomic Radiation. (2008). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation.

Vasconcelos, M.A.R., Leite, E.P., Crósta, A.P. (2012). Contributions of gamma-ray spectrometry to terrestrial impact crater studies: the example of Serra da Cangalha, northeastern Brazil. Geophysical Researche Letters, 39(4). doi: https://doi.org/10.1029/2011GL050525

Zhang, Z.F., Groenevelt, P.H., Parkin, G.W. (1998). The well shape-factor for the measurement of soil hydraulic properties using the Guelph Permeameter. Soil and Tillage Research, 49(3), 219-221. doi: https://doi.org/10.1016/S0167-1987(98)00174-3

Artículos más leídos del mismo autor/a

<< < 1 2