Investigation of Salanda Fault Zone, between Yesiloz and Gumuskent (Nevsehir-Turkey) with PSInSAR

Contenido principal del artículo

Ramazan Demircioğlu
Osman Oktar

Resumen

 


En este estudio, se investigó la sección de la zona de la falla de Salanda entre el pueblode Yesiloz y Gumuskent (Nevsehir, Turquía) mediante métodos geodésicos, y sedeterminó la cantidad de movimiento en esta zona. En este estudio, con este fin utilizamosun radar de apertura sintética interferométrico de dispersión persistente (PSInSAR) paradeterminar el movimiento de la línea de visión (LOS). Estudios anteriores realizados coníndices geológicos y geomorfológicos han demostrado que la zona de la falla de Salandaestá activa. Por primera vez en este estudio, se utilizaron en el análisis PSInSAR 36imágenes de radar de apertura sintética (SAR) adquiridas entre el 8 de enero de 2020 y el29 de noviembre de 2022. Cuando se analizaron los valores anuales de velocidad delárea de estudio en la dirección LOS, se revelaron valores anuales de subsidencia dehasta 7,6 mm y valores anuales de elevación de hasta 7,2 mm. Estos movimientosindican que la falla de es activa y tiene características de falla normal. Sin embargo,también tiene un componente de deslizamiento dextral.

Detalles del artículo

Cómo citar
Demircioğlu, R., & Oktar, O. (2024). Investigation of Salanda Fault Zone, between Yesiloz and Gumuskent (Nevsehir-Turkey) with PSInSAR. Geofísica Internacional, 63(2), 865–879. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1733
Sección
Artículo

Citas

Abdikan, S, Arıkan, M., Sanli, F.B. (2014). Monitoring of coal mining subsidence in a peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ Earth Science, 71, 4081-4089. Doi: https://doi.org/10.1007/s12665-013-2793-1

Arikan, M., Hooper, A., Hanssen, R. (2010). Radar time series analysis over West Anatolia. European Space Agency (Special Publication). ESA, SP-677.

Atabey, E. (1989). Aksaray-H18 Quadrangle [Mapa] 1:100,000. Scale Geological Map and Explanatory Text. Ankara, Türkiye, Maden Tetkik Arama Yayınları.

Biggs, J., Wright, T., Lu, Z., Parsons, B. (2007). Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170(3), 1165-1179. doi: https://doi.org/10.1111/j.1365-246X.2007.03415.x

Çiner, A., Doğan, U., Yıldırım, C., Akçar, N., Ivy-Ochs, S., Alfimov, V., Schlüchter. C. (2015). Quaternary uplift rates of the Central Anatolian Plateau, Turkey: insights from cosmogenic isochron-burial nuclide dating of the Kızılırmak River terraces. Quaternary Science Reviews, 107, 81-97. doi: https://doi.org/10.1016/j.quascirev.2014.10.007

Colesenti, C., Ferretti, A., Prati, C., Rocca, F. (2001). Comparing GPS, optical levelling, and persistent scatterers. [Presentación de paper] International Geoscience and Remote Sensing Symposium

Demircioğlu, R. (2014). Gülşehir-Özkonak (Nevşehir) Çevresinde Kirşehir Masifi ve Örtü Birimlerinin Jeolojisi Ve Yapisal Özellikleri. [Doktora Tezi]. Selçuk Üniversitesi, Konya, Türkiye.

Demircioğlu, R. and Coşkuner, B. (2022). Salanda Fay Zonu’nun Kesikköprü (Kırşehir) ve Yeşilöz (Nevşehir) arasında kalan kesiminin göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(3),464-482. doi: https://dergipark.org.tr/tr/pub/pajes/issue/70618/1136992

Doğan, U. (2011). Climate-Controlled river terrace formation in the Kızılırmak Valley, Cappadocia section, Turkey: inferred from Ar-Ar dating of Quaternary basalts and terraces stratigraphy. Geomorphology, 126(1-2), 66-81. doi: https://doi.org/10.1016/j.geomorph.2010.10.028

Doğan, U., Koçyiğit, A., Wijbrans, J. (2009). Evolutionary history of the Kızılırmak River, Cappadocia Section: implication for the initiation of Neotectonic regime in Central Anatolia, Turkey. [Sesión de conferencia] 62nd Geological Congress of Turkey, Ankara, Türkiye.

Dumka, R. K., Prajapati, S., SuriBabu, D., Swamy, K. V., Kothyyari, G. C. and Malik, K. (2023). GPS and InSAR derived evidences of intra-basin stress and strike-slip tectonics in the vicinity of 2001 (M7.7) earthquake, Kachchh, western India. Geological Journal, 58, 683-699. doi: https://doi.org/10.1002/gj.4618

Dumka, R. K., Suribabu, D. and Prajapati, S. (2022). PSI and GNSS derived ground subsidence detection in the UNESCO Heritage City of Ahmedabad, Western India. Geocarto International, 37(25), 7639-7658. doi: https://doi.org/10.1080/10106049.2021.1980618

Dumka, R. K., SuriBabu, D., Malik, K., Prajapati, S. and Narain, P. (2020). PS-InSAR derived deformation study in the Kachchh, Western India. Applied Computing and Geosciences, 8, 100041. doi: https://doi.org/10.1016/j.acags.2020.100041

Dumka, R. K., Suribabu, D., Narain, P., Kothyari, G. C., Taloor, A. K. and Prajapati, S. (2021). PSInSAR and GNSS derived deformation study in the West part of Narmada Son Lineament (NSL), western India. Quaternary Science Advances, 4, 100035. doi: https://doi.org/10.1016/j.qsa.2021.100035

Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F. (2013). Açıklamalı Türkiye Diri Fay Haritası Ölçek. [Mapa] 1/1.125.000: Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayın Serisi 30.

Famiglietti, N.A., Golshadi, Z., Vallianatos, F., Caputo, R.; Kouli, M., Sakkas, V., Atzori, S., Moschillo, R., Cecere, G., D’Ambrosio, C. et al. (2021). Greece Central Crete ML 5.8 Earthquake: An Example of Coalescent Fault Segments Reconstructed from InSAR and GNSS Data. Remote Sensing, 14(22), 5783. doi: https://doi.org/10.3390/rs14225783

Ferretti, A., Prati, C. and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39, 8-20. doi: http://dx.doi.org/10.1109/36.898661

Florian, P., Heidrun, K., Dietrich, L., Katrin, H., Morelia, U. (2019). Measuring tectonic seafloor deformation and strain-build up with acoustic direct-path ranging. Journal of Geodynamics, 124, 14-24. doi: https://doi.org/10.1016/j.jog.2019.01.002

Gezgin, C. (2022). Using the PS-InSAR technique, the influence of groundwater levels on land subsidence in Karaman (Turkey). Advances in Space Research, 70(11), 3568-3581. doi: https://doi.org/10.1016/j.asr.2022.08.003

Gündüz, H. İ., Yılmaztürk, F. and Orhan, O. (2023). An Investigation of Volcanic Ground Deformation Using InSAR Observations at Tendürek Volcano (Turkey). Applied Sciences, 13(11), 6787. doi: https://doi.org/10.3390/app13116787

Gürsoy, Ö., Kaya, Ş., Çakir, Z., Tatar, O., Canbaz, O. (2017). Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using the spectral classification of satellite images and field measurements. Geomatics, Natural Hazards, and Risk, 8(2), 1276-1288. doi: https://doi.org/10.1080/19475705.2017.1318794

Hastaoğlu, K.Ö., Poyraz, F., Türk, T., Koçbulut, F., Şanlı, U., Yılmaz, I., Şanlı, F.B., Kuçak, R.A., Demirel, M., Gürsoy, Ö., and Duman, H. (2015). GPS ve PS-InSAR yöntemleri kullanılarak Koyulhisar (Sivas) heyelanlarının izlenmesi: ilk sonuçlar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2), 161-175. doi: https://doi.org/10.17714/gufbed.2014.04.013

He, P., Wen, Y., Xu, C., Chen, Y. (2018). High-quality three-dimensional displacement fields from new-generation SAR imagery: application to the 2017 Ezgeleh, Iran, earthquake. Journal of Geodesy, 93. doi: https://doi.org/10.1007/s00190-018-1183-6

Hooper, A, Segall, P, Zebker, H. (2007). Persistent Scatterer InSAR for crustal deformation analysis with application to Volcán Alcedo. Galápagos. Journal of Geophysical Research, 112(B7). doi: https://doi.org/10.1029/2006JB004763

Hooper, A., Bekaert, D., Hussain, E., and Spaans, K. (2018). Stamps/Manual, VeStamps4.1b, School of Environment, University of Leeds, LS2 9JT, UK.

Hooper, A., Zebker, H., Segall, P., Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 5. doi: https://doi.org/10.1029/2004GL021737

Howell, A., Nissen, E., Stahl, T., Clark, K., Kearse, J., Van Dissen, R., Jones, K. (2020). Three‐dimensional surface displacements during the 2016 MW 7.8 Kaikōura earthquake (New Zealand) from photogrammetry‐derived point clouds. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018739. doi: https://doi.org/10.1029/2019JB018739

Kandıllı. (2022). Observatory Regıonal Earthquake-Tsunami Monıtorıng And Evaluatıon Centre. 18 January 2022 Sarıoglan-Kayserı Earthquake. Press Release.

Koçyiğit, A. (2003). Orta Anadolu’nun genel neotektonik özellikleri ve depremselliği. Türkiye Petrol Jeologları Derneği Bülteni, 5(Özel Sayı), 1-26.

Koçyiğit, A., Doğan, U. (2016). The strike-slip neotectonic regime and related structures in the Cappadocia region: a case study in the Salanda basin, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 25(5), 393-417. doi: https://doi.org/10.3906/yer-1512-9

Liu, J., and Zhao, X. (2020). GNSS Fault Detection and Exclusion Based on Virtual Pseudorange‐Based Consistency Check Method. Chinese Journal of Electronics, 29(1), 41-48. doi: https://doi.org/10.3390/s20030590

Lu, P., Han, J., Hao, T., Li, R. and Qiao, G. (2020). Seasonal deformation of permafrost inWudaoliang basin in Qinghai-Tibet plateau revealed by StaMPS-InSAR. Marine Geodesy, 43, 248-268. doi: https://api.semanticscholar.org/CorpusID:213881589

Meisina, C., Zucca, F., Fossati, D., Ceriani, M., Allievi, J. (2006). Ground deformation monitoring by using the permanent scatterers technique: the example of the Oltrepo Pavese (Lombardia, Italy), Engineering Geology, 88(3-4), 240-259. doi: https://doi.org/10.1016/j.enggeo.2006.09.010

Oktar, O., Erdoğan, H., Poyraz, F., and Tiryakioğlu, İ. (2021). Investigation of deformations with the GNSS and PSInSAR methods. Arabian Journal of Geosciences, 14, 2586. doi: https://doi.org/10.1007/s12517-021-08765-x

Peyret, M., Rolandone, F., Dominguez, S., Djamour, Y., Meyer, B. (2008). Source model for the Mw 6.1, 31 March 2006, Chalan-Chulan earthquake (Iran) from InSAR. Terra Nova, 20(2), 126-133. doi: https://doi.org/10.1111/j.1365-3121.2008.00797.x

Poyraz, F., Hastaoğlu, K.Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13, 844. doi: https://doi.org/10.1007/s12517-020-05834-5

Rodríguez, R., Lira, J., & Rodríguez, I. (2012). Subsidence risk due to groundwater extraction in urban areas using fractal analysis of satellite images. Geofísica Internacional, 51(2), 157–167. doi: https://doi.org/10.22201/igeof.00167169p.2012.51.2.605

Rosu, A.M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., Klinger, Y. (2015). Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 48-59. doi: https://doi.org/10.1016/j.isprsjprs.2014.03.002

Şaroğlu, F., Emre, Ö., Aydoğan, B. (1987). Türkiye’nin diri fayları ve depremsellikleri. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye, 394.

Scott, C., Bunds, M., Shirzaei, M., Toke, N. (2020). Creep along the Central San Andreas Fault from surface fractures, topographic differencing, and InSAR. Journal of Geophysical Research: Solid Earth, 125, e2020JB019762. doi: https://doi.org/10.1029/2020JB019762

Şengör, A.M.C., Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241. doi: https://doi.org/10.1016/0040-1951(81)90275-4

Shirzaei, M., and Bürgmann, R. (2013). Time‐dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data. Journal of Geophysical Research: Solid Earth, 118(4), 1733-1746. doi: https://doi.org/10.1002/jgrb.50149

Suárez, G. ., Jaramillo, S. H., López-Quiroz, P., & Sánchez-Zamora, O. (2018). Estimation of ground subsidence in the city of Morelia, Mexico using Satellite Interferometry (INSAR)s. Geofísica Internacional, 57(1), 39-58. doi: https://doi.org/10.22201/igeof.00167169p.2018.57.1.1821

Suribabu, D., Dumka, R. K., Kothyari, G. C., Swamy K. V. and Prajapati, S. (2022c). Identification of crustal deformation in the Saurashtra region, western India: insights from PSI and GNSS derived investigation. Acta Geodaetica et Geophysica, 57, 639-659. doi: https://doi.org/10.1007/s40328-022-00399-z

Suribabu, D., Dumka, R. K., Paikray, J., Kothyari, G. C., Thakkar, M., Swamy, K. V., Taloor, A. K. and Prajapati, S. (2022). Geodetic characterization of active Katrol Hill Fault (KHF) of Central Mainland Kachchh, western India. Geodesy and Geodynamics, 13(3), 247-253. doi: https://doi.org/10.1016/j.geog.2021.05.003

Temiz, U. (2004). Kırşehir Dolayının Neotektoniği ve Depremselliği. [Doktora Tezi] Ankara University, Ankara, Turkey.

Temiz, U., Gökten, E., Eikenberg, J. (2009). U/Th dating of fissure ridge travertines from the Kırşehir region (Central Anatolia Turkey): structural relations and implications for the Neotectonic development of the Anatolian block. Geodinamica Acta, 22(4), 201-213. doi: https://doi.org/10.3166/ga.22.201-213

Wang, T., and Jónsson, S. (2015). Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3271-3278. doi: https://doi.org/10.1109/JSTARS.2014.2387865

Yavaşoğlu, H., Tarı, E., Tüysüz, O., Çakır, Z., Ergintav, S. (2011). Determining and modelling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. Journal of Geodynamics, 51(5), 339-343. doi: https://doi.org/10.1016/j.jog.2010.07.003

Yen, J.Y., Lu, C.H., Chang, C.P., Hooper, A., Chang, Y.H., Liang, W.T., Chang, T.Y., Lin, M.S., Chen, K.S. (2011). Investigating active deformation in the northern longitudinal valley and City of Hualien in Eastern Taiwan using persistent scatterer and small-baseline SAR interferometry. Terrestrial Atmospheric and Oceanic Sciences, 22(3):291-304. doi: https://scihub.copernicus.eu/dhus/#/home