Momentum flux of the solar wind near planetary magnetospheres: a comparative study

Contenido principal del artículo

H. Pérez de Tejada

Resumen

Se presenta un estudio del perfil Je velocidad del viento solar exterior a las magnetosferas de laTierra, Marte y Venus. Existe una diferencia característica en las condiciones presentes en planetas con magnetización interna alta y débil. En el caso de un planeta fuertemente magnetizado, como lo es la Tierra, la velocidad del viento solar cerca de la magnetopausa se mantiene aproximadamente constante en la dirección normal a esa frontera. En planetas de baja magnetización (Venus, Marte) el perfil de velocidad muestra, cerca de la magnetoionopausa, un gradiente transversal el cual implica una reducción efectiva del flujo de momento del viento solar en esa región. El diferente comportamiento del viento solar en la vecindad de cada planeta es examinado en conexión con el proceso de interacción que opera en su frontera magnetosférica.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
13535
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Detalles del artículo

Cómo citar
Pérez de Tejada, H. (1985). Momentum flux of the solar wind near planetary magnetospheres: a comparative study. Geofísica Internacional, 24(3), 409–424. https://doi.org/10.22201/igeof.00167169p.1985.24.3.627
Sección
Artículo

Citas

AXFORD, W. I. and C. D. HINES, 1961. A unifying theory of high latitude geophysical phenomena, Can. J. Physics, 39, 1433. DOI: https://doi.org/10.1139/p61-172

BRIDGE, H. S., A. J. LAZARUS, C. W. SNYDER, E. J. SMITH, L. DAVIS, P. J. COLEMAN and D. E. JONES, 1967. Plasma and magnetic fields observed near Venus, Science, 158, 1669. DOI: https://doi.org/10.1126/science.158.3809.1669

BREUS, T. K., 1980. Peculiarities of the solar wind interaction with the upper atmospheres of Venus and Mars. Geophys. Int. 19, 1, 17. DOI: https://doi.org/10.22201/igeof.00167169p.1980.19.1.820

CASSEN, P., and J. SZABO, 1970. The viscous magnetopause. Planet Space Sci., 18, 349. DOI: https://doi.org/10.1016/0032-0633(70)90173-X

CLOUTIER, P. A., R. E. DANIELL, Jr. and D.M. BUTLER, 1974. Atmospheric ion wakes of Venus and Mars in the solar wind. Planet Space Sci., 22, 967. DOI: https://doi.org/10.1016/0032-0633(74)90166-4

CROOKER, N. U., 1977. Explorer 33 entry layer observations. J. Geophys. Res., 82, 515. DOI: https://doi.org/10.1029/JA082i004p00515

DOLGINOV, Sh. Sh., Ye. G. YEROSHENKO and L. N. ZHUZGOV, 1973. Magnetic field in the very close neighborhood of Mars according to data from the Mars 2 and 3 spacecraft. J. Geophys. Res., 78, 4779. DOI: https://doi.org/10.1029/JA078i022p04779

DOLGINOV, Sh. Sh., 1976. The magnetic field of Mars according to the data from the Mars 3 and Mars 5. J. Geophys. Res., 81, 3353. DOI: https://doi.org/10.1029/JA081i019p03353

DOLGINOV, Sh. Sh., 1978. Magnetic fields in the vicinity of Venus according to Venera and Mariner data. Cos. Res. 16, 603.

DUBININ, E. M., P. L. ISRAELOVICH, I. M. PODGORNYI and S. I. SHKOLNIKOV A, 1981. Nature of the magnetic field near Mars. Cos. Res. 21, 95.

DUNGEY, J. W., 1961. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI: https://doi.org/10.1103/PhysRevLett.6.47

FAYE-PETERSEN, R. and G. HECKMAN, 1968. Viscous magnetospheric boundary layer. Ann. Geophys. 24, 347.

GOMBOSI, T. I., M. HORANYI, T. E. CRAVENS, A. F. NAGY and C. T. RUSSELL, 1981. The role of charge exchange in the solar wind absorption by Venus. Geophys. Res. Lett. 8, 1265. DOI: https://doi.org/10.1029/GL008i012p01265

GRINGAUZ, K. I., 1976. Interaction of the solar wind with Mars as seen by charged particle traps on Mars 2, 3 and 5 satellites. Rev. of Geophys. and Space Phys., 14, 391. DOI: https://doi.org/10.1029/RG014i003p00391

HAERENDEL, G., G. PASHMANN, N. SCKOPKE, H. ROSENBAUER and P. C. HEDGECOCK, 1978. The front side boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res., 83. 3195. DOI: https://doi.org/10.1029/JA083iA07p03195

HANSON, W. B., S. SANATANI and D. R. ZUCCARO, 1977. The Martian ionosphere as observed by the Viking retarding potential analyzer. J. Geophys. Res., 82, 4351. DOI: https://doi.org/10.1029/JS082i028p04351

JOHNSON, F. S., 1978. The driving force of magnetospheric convection. Rev, of Geophys. and Space Phys., 16, 161. DOI: https://doi.org/10.1029/RG016i002p00161

INTRILIGATOR, D. S. and E. J. SMITH, 1979. Mars in the solar wind. J. Geophys. Res., 84, 8427. DOI: https://doi.org/10.1029/JB084iB14p08427

INTRILIGATOR, D. S., 1982. Observations of mass addition to the shocked solar wind in the Venusian ionosheath. Geophys. Res. Lett. 9,727. DOI: https://doi.org/10.1029/GL009i006p00727

KNUDSEN, W. C., K. SPENNER, K. L. MILLER and V. NOV AK, 1980. Transport of ionospheric O+ions across the Venus terminator and implications. J. Geophys. Res., 85, 7803. DOI: https://doi.org/10.1029/JA085iA13p07803

MIHALOV, J. D., J. H. WOLFE and D. S. INTRILIGATOR, 1980. Pioneer Venus plasma observations of the solar wind-Venus interaction region. J. Geophys. Res., 85, 7613. DOI: https://doi.org/10.1029/JA085iA13p07613

MOZER, F. S., 1984. Electric field evidence on the viscous interaction, at the magnetopause. Geophys. Res. Lett., 11, 135. DOI: https://doi.org/10.1029/GL011i002p00135

PEREZ-DE-TEJADA, H., and M. DRYER, 1976. Viscous boundary layer for the Venusian ionopause. J. Geophys. Res., 81, 2023. DOI: https://doi.org/10.1029/JA081i013p02023

PEREZ-DE-TEJADA, H., 1982. Viscous dissipation at the Venus ionopause. J. Geophys. Res., 87, 7405. DOI: https://doi.org/10.1029/JA087iA09p07405

ROMANOV, S. A., V. N. SMIRNOV and D. L. V AISBERG, 1979. On the nature of solar wind-Venus interaction. Cosmic Res., 16, 603.

ROSENBAUER, H., H. GRUNWALDT, M. D. MONTGOMERY, G. PASHMANN and N. SCKOPKE, 1975. Heos 2 plasma observation in the distant polar magnetosphere: The plasma mantle. J. Geophys. Res., 80, 2723. DOI: https://doi.org/10.1029/JA080i019p02723

RUSSELL, C. T. and O. L. VAISBERG, 1983. The interaction of the solar wind with Venus, Univ. of Arizona Press., D. Hunten, Ed.

RUSSELL, C. T., 1979. The Martian magnetic field. Physics of the Earth and Planet. Interiors, 20, 237. DOI: https://doi.org/10.1016/0031-9201(79)90047-5

SLAVIN, J. A. and R. E. HOLZER, 1982. The solar wind interaction with Mars revisited. J. Geophys. Res., 87, 10285. DOI: https://doi.org/10.1029/JB087iB12p10285

SPENNER, K., W. C. KNUDSEN, K. L. MILLER, V. NOVAK, C. T. RUSSELL and R. C. ELPHIC, 1980. Observations of the Venus mantle, the boundary region between the solar wind and ionosphere; J. Geophys. Res., 85, 7655. DOI: https://doi.org/10.1029/JA085iA13p07655

SPREITER, J. R., A. L. SUMMERS and A. W. RIZZI, 1970. Solar wind flow past non-magnetic planets. Planet. Space Sci., 18, 1281. DOI: https://doi.org/10.1016/0032-0633(70)90139-X

VAISBERG, O. L., A. V. BOGDANOV, V. N. SMIRNOV and S. A. ROMANOV, 1976. On the nature of the solar wind Mars interaction; Solar wind interaction with the planets Mercury, Venus and Mars, N. F. Ness Ed. NASA SP-397 (p.21).

VASILYEV, M. B., A. S. VYSHLOV, M. A. KOLOSOV, N.A. SAVICH. V. A. SAMOVOL, L. N. SAMOZNAEV, A. I. SIDORENKO, Yu. N. ZAITSEV, G. M. PETROV, O. N. RZHIGA, D. Ya. SHTERN and L. I. POMENOVA, 1975. Preliminary results of the two frequency radio transillumination of the Martian ionosphere by means of the Mars automatic interplanetary stations in 1974. Cos. Res., 13, 41.

VERIGIN, M. I., K. I. GRINGAUZ, T. GOMBOSI, T. K. BREUS, V. V. BEZRUKIKH, A. P. REMIZOV and G. I. VOLKOV, 1978. Plasma near Venus from the Venera 9 and 10 wide angle Analyzer data. J. Geophys. Res., 83, 3721. DOI: https://doi.org/10.1029/JA083iA08p03721