Momentum flux of the solar wind near planetary magnetospheres: a comparative study

Main Article Content

H. Pérez de Tejada

Abstract

A study of the velocity profiles of the shocked solar wind exterior to the magnetospherts of the Earth, Mars and Venus is presented. A characteristic difference exists between the conditions present in planets with and without a strong intrinsic magnetic field. In a strongly magnetized planet (as it is the case in the earth), the velocity of the solar wind near the magnetopause remains nearly constant along directions normal to that boundary. In weakly magnetized planets (Venus, Mars), on the other hand, the velocity profile near the magnetopause/ionopause exhibits a transverse gradient which • implies decreased values of the momentum flux of the solar wind in those regions. The implications of the different behavior of the shocked solar wind are discussed in connection with the nature of the interaction process that takes place in each case.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
13535
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Article Details

How to Cite
Pérez de Tejada, H. (1985). Momentum flux of the solar wind near planetary magnetospheres: a comparative study. Geofisica Internacional, 24(3), 409–424. https://doi.org/10.22201/igeof.00167169p.1985.24.3.627
Section
Article

References

AXFORD, W. I. and C. D. HINES, 1961. A unifying theory of high latitude geophysical phenomena, Can. J. Physics, 39, 1433. DOI: https://doi.org/10.1139/p61-172

BRIDGE, H. S., A. J. LAZARUS, C. W. SNYDER, E. J. SMITH, L. DAVIS, P. J. COLEMAN and D. E. JONES, 1967. Plasma and magnetic fields observed near Venus, Science, 158, 1669. DOI: https://doi.org/10.1126/science.158.3809.1669

BREUS, T. K., 1980. Peculiarities of the solar wind interaction with the upper atmospheres of Venus and Mars. Geophys. Int. 19, 1, 17. DOI: https://doi.org/10.22201/igeof.00167169p.1980.19.1.820

CASSEN, P., and J. SZABO, 1970. The viscous magnetopause. Planet Space Sci., 18, 349. DOI: https://doi.org/10.1016/0032-0633(70)90173-X

CLOUTIER, P. A., R. E. DANIELL, Jr. and D.M. BUTLER, 1974. Atmospheric ion wakes of Venus and Mars in the solar wind. Planet Space Sci., 22, 967. DOI: https://doi.org/10.1016/0032-0633(74)90166-4

CROOKER, N. U., 1977. Explorer 33 entry layer observations. J. Geophys. Res., 82, 515. DOI: https://doi.org/10.1029/JA082i004p00515

DOLGINOV, Sh. Sh., Ye. G. YEROSHENKO and L. N. ZHUZGOV, 1973. Magnetic field in the very close neighborhood of Mars according to data from the Mars 2 and 3 spacecraft. J. Geophys. Res., 78, 4779. DOI: https://doi.org/10.1029/JA078i022p04779

DOLGINOV, Sh. Sh., 1976. The magnetic field of Mars according to the data from the Mars 3 and Mars 5. J. Geophys. Res., 81, 3353. DOI: https://doi.org/10.1029/JA081i019p03353

DOLGINOV, Sh. Sh., 1978. Magnetic fields in the vicinity of Venus according to Venera and Mariner data. Cos. Res. 16, 603.

DUBININ, E. M., P. L. ISRAELOVICH, I. M. PODGORNYI and S. I. SHKOLNIKOV A, 1981. Nature of the magnetic field near Mars. Cos. Res. 21, 95.

DUNGEY, J. W., 1961. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI: https://doi.org/10.1103/PhysRevLett.6.47

FAYE-PETERSEN, R. and G. HECKMAN, 1968. Viscous magnetospheric boundary layer. Ann. Geophys. 24, 347.

GOMBOSI, T. I., M. HORANYI, T. E. CRAVENS, A. F. NAGY and C. T. RUSSELL, 1981. The role of charge exchange in the solar wind absorption by Venus. Geophys. Res. Lett. 8, 1265. DOI: https://doi.org/10.1029/GL008i012p01265

GRINGAUZ, K. I., 1976. Interaction of the solar wind with Mars as seen by charged particle traps on Mars 2, 3 and 5 satellites. Rev. of Geophys. and Space Phys., 14, 391. DOI: https://doi.org/10.1029/RG014i003p00391

HAERENDEL, G., G. PASHMANN, N. SCKOPKE, H. ROSENBAUER and P. C. HEDGECOCK, 1978. The front side boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res., 83. 3195. DOI: https://doi.org/10.1029/JA083iA07p03195

HANSON, W. B., S. SANATANI and D. R. ZUCCARO, 1977. The Martian ionosphere as observed by the Viking retarding potential analyzer. J. Geophys. Res., 82, 4351. DOI: https://doi.org/10.1029/JS082i028p04351

JOHNSON, F. S., 1978. The driving force of magnetospheric convection. Rev, of Geophys. and Space Phys., 16, 161. DOI: https://doi.org/10.1029/RG016i002p00161

INTRILIGATOR, D. S. and E. J. SMITH, 1979. Mars in the solar wind. J. Geophys. Res., 84, 8427. DOI: https://doi.org/10.1029/JB084iB14p08427

INTRILIGATOR, D. S., 1982. Observations of mass addition to the shocked solar wind in the Venusian ionosheath. Geophys. Res. Lett. 9,727. DOI: https://doi.org/10.1029/GL009i006p00727

KNUDSEN, W. C., K. SPENNER, K. L. MILLER and V. NOV AK, 1980. Transport of ionospheric O+ions across the Venus terminator and implications. J. Geophys. Res., 85, 7803. DOI: https://doi.org/10.1029/JA085iA13p07803

MIHALOV, J. D., J. H. WOLFE and D. S. INTRILIGATOR, 1980. Pioneer Venus plasma observations of the solar wind-Venus interaction region. J. Geophys. Res., 85, 7613. DOI: https://doi.org/10.1029/JA085iA13p07613

MOZER, F. S., 1984. Electric field evidence on the viscous interaction, at the magnetopause. Geophys. Res. Lett., 11, 135. DOI: https://doi.org/10.1029/GL011i002p00135

PEREZ-DE-TEJADA, H., and M. DRYER, 1976. Viscous boundary layer for the Venusian ionopause. J. Geophys. Res., 81, 2023. DOI: https://doi.org/10.1029/JA081i013p02023

PEREZ-DE-TEJADA, H., 1982. Viscous dissipation at the Venus ionopause. J. Geophys. Res., 87, 7405. DOI: https://doi.org/10.1029/JA087iA09p07405

ROMANOV, S. A., V. N. SMIRNOV and D. L. V AISBERG, 1979. On the nature of solar wind-Venus interaction. Cosmic Res., 16, 603.

ROSENBAUER, H., H. GRUNWALDT, M. D. MONTGOMERY, G. PASHMANN and N. SCKOPKE, 1975. Heos 2 plasma observation in the distant polar magnetosphere: The plasma mantle. J. Geophys. Res., 80, 2723. DOI: https://doi.org/10.1029/JA080i019p02723

RUSSELL, C. T. and O. L. VAISBERG, 1983. The interaction of the solar wind with Venus, Univ. of Arizona Press., D. Hunten, Ed.

RUSSELL, C. T., 1979. The Martian magnetic field. Physics of the Earth and Planet. Interiors, 20, 237. DOI: https://doi.org/10.1016/0031-9201(79)90047-5

SLAVIN, J. A. and R. E. HOLZER, 1982. The solar wind interaction with Mars revisited. J. Geophys. Res., 87, 10285. DOI: https://doi.org/10.1029/JB087iB12p10285

SPENNER, K., W. C. KNUDSEN, K. L. MILLER, V. NOVAK, C. T. RUSSELL and R. C. ELPHIC, 1980. Observations of the Venus mantle, the boundary region between the solar wind and ionosphere; J. Geophys. Res., 85, 7655. DOI: https://doi.org/10.1029/JA085iA13p07655

SPREITER, J. R., A. L. SUMMERS and A. W. RIZZI, 1970. Solar wind flow past non-magnetic planets. Planet. Space Sci., 18, 1281. DOI: https://doi.org/10.1016/0032-0633(70)90139-X

VAISBERG, O. L., A. V. BOGDANOV, V. N. SMIRNOV and S. A. ROMANOV, 1976. On the nature of the solar wind Mars interaction; Solar wind interaction with the planets Mercury, Venus and Mars, N. F. Ness Ed. NASA SP-397 (p.21).

VASILYEV, M. B., A. S. VYSHLOV, M. A. KOLOSOV, N.A. SAVICH. V. A. SAMOVOL, L. N. SAMOZNAEV, A. I. SIDORENKO, Yu. N. ZAITSEV, G. M. PETROV, O. N. RZHIGA, D. Ya. SHTERN and L. I. POMENOVA, 1975. Preliminary results of the two frequency radio transillumination of the Martian ionosphere by means of the Mars automatic interplanetary stations in 1974. Cos. Res., 13, 41.

VERIGIN, M. I., K. I. GRINGAUZ, T. GOMBOSI, T. K. BREUS, V. V. BEZRUKIKH, A. P. REMIZOV and G. I. VOLKOV, 1978. Plasma near Venus from the Venera 9 and 10 wide angle Analyzer data. J. Geophys. Res., 83, 3721. DOI: https://doi.org/10.1029/JA083iA08p03721