Simulation of the annual cycle of climate with a thermodynamic numerical model
Contenido principal del artículo
Resumen
Se presenta un modelo hemisférico numérico termodinámico en el que el ciclo anual del albedo de superficie se genera internamente, junto con la temperatura troposferica media, la temperatura en la superficie de los continentes, y la radiación de onda corta y larga. El modelo también incluye como variables las anomalias de la temperatura de la superficie de los oceanos, la evaporaci6n en la superficie, el calor sensible cedido por la superficie a la atm6sfera, el calor de condensaci6n de vapor de agua en las nubes, la extension horizontal de la nubosidad y la componente horizontal del viento. Los valores calculados del ciclo anual del albedo de superficie, de la temperatura a los 700 mb y de las componentes de la radiaci6n muestran, en general, buena concordancia con los valores observados.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Citas
ADEM, J., 1962. On the theory of the general circulation of the atmosphere. Tellus, 14, 102-115. DOI: https://doi.org/10.1111/j.2153-3490.1962.tb00123.x
ADEM, J., 1963. Preliminary computations on the maintenance and prediction of seasonal temperatures in the troposphere. Mon. Wea. Rev. 91, 375-386. DOI: https://doi.org/10.1175/1520-0493(1963)091<0375:PCOTMA>2.3.CO;2
ADEM, J., 1964a. On the physical basis for the numerical prediction of monthly and seasonal temperatures in the troposphere-ocean-continent system. Mon. Wea. Rev., 92, 91-104. DOI: https://doi.org/10.1175/1520-0493(1964)092<0091:OTPBFT>2.3.CO;2
ADEM, J., 1964b On the thermal state of the troposphere-ocean-continent system in the Northern Hemisphere. Geofísica Internacional, 4, 3-32.
ADEM, J., 1965a. Preliminary model for computing mid-tropospheric and surface temperatures from satellite data. J. Geophys. Res., 70, 2763-2667. DOI: https://doi.org/10.1029/JZ070i012p02763
ADEM, J., 1965b. Experiments aiming at monthly and seasonal numerical weather prediction. Mon. Wea. Rev., 93, 495-503. DOI: https://doi.org/10.1175/1520-0493(1965)093<0495:EAAMAS>2.3.CO;2
ADEM, J., 1970a. On the prediction of mean monthly ocean temperatures. Tellus, 22, 410-430. DOI: https://doi.org/10.1111/j.2153-3490.1970.tb00507.x
ADEM, J., 1970b. Incorporation of advection of heat by mean winds and by ocean currents in a thermodynamic model for long range weather prediction. Mon. Wea. Rev., 98, 775-786. DOI: https://doi.org/10.1175/1520-0493(1970)098<0776:IOAOHB>2.3.CO;2
ADEM, J., 1979a. Low resolution thermodynamic grid models. Dyn. Atmos. Oceans, 3, 433-451. DOI: https://doi.org/10.1016/0377-0265(79)90023-X
ADEM, J., 1979b. Sensitivity studies using a climate thermodynamic model, with particular reference to the effect of changing the solar constant. Geofísica Internacional., 18, 347-384. DOI: https://doi.org/10.22201/igeof.00167169p.1979.18.4.969
ADEM, J., 1981a. Numerical experiments on ice age climates. Climatic Change, 3, 155-171. DOI: https://doi.org/10.1007/BF02423177
ADEM, J., 1981b. Numerical simulation of the annual cycle of climate during the ice ages. J. Geophys. Res., 86, 12, 015-12, 034. DOI: https://doi.org/10.1029/JC086iC12p12015
ADEM, J., and W. L. DONN, 1981. Comparison of the Earth-Atmosphere radiation budget determined by a climate model and by satellite observations. Proceedings of the 5th Climate Diagnostic Workshop, Seattle, Washington. Oct. 22-24, 1980. Climate analysis Center, NWS/NOAA, Washington, D. C., 319-327.
CLAPP, P. F., 1967. Specification of monthly frequency of snow cover based on macro-scale parameters. J. Appl. Meteor., 7, 1018-1024. DOI: https://doi.org/10.1175/1520-0450(1967)006<1018:SOMFOS>2.0.CO;2
CLAPP, P. F., 1970. Parameterization of macroscale transient heat transport for use in a mean-motion model of the general circulation. J. Appl. Meteor., 9, 554-563. DOI: https://doi.org/10.1175/1520-0450(1970)009<0554:POMTHT>2.0.CO;2
CLAPP, P. F., S. H. SCOLNICK, R. E. TAUBENSEE and F. J. WINNINGHOFF, 1965. Parameterization of certain atmospheric heat sources and sinks for use in a numerical model for monthly and seasonal forecasting. Internal Report, Extended Forecast Division (Available on request to Climate Analysis Center, NWS/NOAA, Washington, D. C. 20233).
CURRAN, R. J., R. WEXLER and M. L. NACK, 1979. Albedo Climatology analysis and the determination of fractional cloud cover. NASA Tech. Memo. 79576.
DEFANT, A., 1921. Die Zirkulation der Atmosphiire in den Gemiissigten Breiten der Erde. Geograf. Ann., 3, 209-266. DOI: https://doi.org/10.1080/20014422.1921.11880911
DICKSON, R. R. and J. POSEY, 1967. Maps of snow-cover probability for the Northern Hemisphere. Mon. Wea. Rev., 95, 347-353. DOI: https://doi.org/10.1175/1520-0493(1967)095<0347:MOSCPF>2.3.CO;2
KUKLA, G. F., 1975. Missing link between Milankovitch and climate, Nature, 253, 600. DOI: https://doi.org/10.1038/253600a0
KUKLA, G. F. and D. ROBINSON, 1979. Annual cycle of surface albedo. Mon. Wea. Rev., 108, 56-68. DOI: https://doi.org/10.1175/1520-0493(1980)108<0056:ACOSA>2.0.CO;2
POSEY, J. and P. F. CLAPP, 1964. Global distribution of normal surface albedo. Geofísica Internacional, 4, 33-48. DOI: https://doi.org/10.22201/igeof.2954436xe.1964.4.1.1654
ROBOCK, A., 1980. The seasonal cycle of snow cover, sea ice and albedo. Mon. Wea. Rev., 108, 267-285. DOI: https://doi.org/10.1175/1520-0493(1980)108<0267:TSCOSC>2.0.CO;2
SCHUTZ, D. and W. L. GATES, 1972. Global climate data for surface, 800 mb, 400 mb July. R-1029-ARPA, The Rand Corporation, 1700 Main Street, Santa Monica, Ca. 90406. 180 pp.
THOMPSON, P. D., 1961. Numerical weather analysis and predictions. The Mac-millan Company, New York, 170 pp.
WINSTON, J., A. GRUBER, T. I. GRAY, Jr., M. S. VARNADORE, C. L. EARNEST and L. P. MANNELLO, 1979. Earth-atmosphere radiation budget analysis derived from NOAA satellite data, June 1974-February 1978. Vols. I and II, Meteorological Satellite Laboratory, NESS, NOAA, Washington, D. C. 20233.