Atenuacion anelástica en la Cordillera central del Océano Atlántico

Main Article Content

J. A. Canas

Abstract

The attenuation of the Rayleigh wave fundamental mode along a stripe of 220 km from the sides of the Mid-Atlantic Ridge (0-11 m.y.) and adjacent regions (>11m.y.) were obtained using a two-station method. From the estimated attenuation coefficients and group velocities of both regions it was possible to obtain the regionalized quality factors for Rayleigh waves. Applying modem inversion methods to phase and group velocities a velocity model for the shear wave was obtained for the> 11 m.y. old region of the Atlantic Ocean. Similarly, from the attenuation coefficients anelastic models for 0-11m.y. and >11 m.y. regions were developed. In general, the results indicate that the internal friction beneath the Mid-Atlantic Ridge is larger than beneath the adjacent regions and that the variations of anelasticity between isochrones 11 and 23 m.y. of the Mid-Atlantic Ridge are practically negligible. These results are consistent with previous studies carried out at the Atlantic and Pacific Oceans which support the fact that anelastic attenuation is a function of the litospheric age.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
15108
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Article Details

How to Cite
Canas, J. A. (1981). Atenuacion anelástica en la Cordillera central del Océano Atlántico. Geofisica Internacional, 20(2), 85–107. https://doi.org/10.22201/igeof.00167169p.1981.20.2.911
Section
Article

References

BACKUS, G. E. y F. GILBERT, 1967. Numerical application of a formalism for geophysical inverse problems. Geophys. J. R. astr. Soc., 13, 247-276. DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02159.x

BACKUS, G. E. y F. GILBERT, 1968. The resolving power of gross Earth data. Geophys. J. R. astr. Soc., 16, 169-205. DOI: https://doi.org/10.1111/j.1365-246X.1968.tb00216.x

BACKUS, G. E. y F. GILBERT, 1970. Uniqueness in the inversion of innacurate gross Earth data. Phil. Trans. R. Soc. A266, 123-192. DOI: https://doi.org/10.1098/rsta.1970.0005

BRAVO, C. y A. UDIAS, 1974. Rayleigh wave group velocity dispersion in North Atlantic region. Geophys. J. R. astr. Soc., 37, 297-304. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb01240.x

CANAS, J. A., 1981a. Polarización azimutal anisotrópica en el Ocáano Atlántico. Tecniterrae. 39, 50-55.

CANAS, J. A., 1981b. Atenuación de las ondas de Love en una zona del Atlántico que comprende el Bermuda Rise y el Arco Volcánico del Caribe. Geofísica Internacional, Aceptado para publicación. DOI: https://doi.org/10.22201/igeof.00167169p.1981.20.1.2165

CANAS, J. A., 1981c. Modelo de Qß-1 para el Este del Océano Pacífico. Anales de Física de la R. S. E. de Física y Química. Aceptado para publicación.

CANAS, J. A. y B. J. MITCHELL, 1978. Lateral variation of surface wave anelastic attenuation across the Pacific. Bull Seism. Soc. Am., 68, 1637-1650.

CANAS, J. A., B. J. MITCHELL y A. M. CORREIG, 1980. Qß-1 models for the East Pacific Rise and the Nazca plate, Mechanisms of Plate Tectonics and Continental Drift, 123-133, eds. P. A. Davies and S. K. Runcorn, Academic Press, London.

CANAS, J. A. y A. M. CORREIG, 1981. Modelo de fricción interna de las ondas de cizalla para las placas Nazca-Cocos. Geofísica Internacional, 19 : 2, 95-108. DOI: https://doi.org/10.22201/igeof.00167169p.1980.19.2.880

CANAS, J. A. y B. J. MITCHELL, 1981. Rayleigh wave attenuation and its variation across the Atlantic Ocean. Geophys. J. R. astr. Soc. (Aceptado para publicación). DOI: https://doi.org/10.1111/j.1365-246X.1981.tb02739.x

CANAS, J. A. y A. UDIAS, 1981. Variación lateral de las velocidades de las ondas de cizalla en función de la edad del suelo oceánico del Pacífico. Anales de Física de la R. S. E. de Físicay Química. (Imprimiéndose).

CORREIG, A. M. y B. J. MITCHELL, 1980. Regional variation of Rayleigh wave attenuation coefficients in the eastern Pacific. Pure and Applied Geophysics, 118, 831-845. DOI: https://doi.org/10.1007/BF01593034

DER, Z. A., R. MASSE y M. LANDISMAN, 1970. Effects of observational errors on the resolution of surface waves at intermediate distances. J. Geophys. Res., 75, 3399-3409. DOI: https://doi.org/10.1029/JB075i017p03399

DZIEWONSKI, A., S. BLOCH y M. LANDISMAN, 1969. A technique for the analysis of transient seismic signals. Bull Seism. Soc. Am., 59, 427-444. DOI: https://doi.org/10.1785/BSSA0590010427

DZIEWONSKI, A. y A. L. HALES, 1972. Numerical analysis of dispersed seismic waves. Methods in Computational Physics, 11, 39-85, ed. B. A. Bolt: Academic Press, New York. DOI: https://doi.org/10.1016/B978-0-12-460811-5.50007-6

EWING, M., G. CARPENTER, C. WINDISCH y J. EWING, 1973. Sediment distribution in the ocean: the Atlantic, Bull. Geol. Soc. Am., 84, 71-88. DOI: https://doi.org/10.1130/0016-7606(1973)84<71:SDITOT>2.0.CO;2

FRANKLIN, J. N., 1970. Well-possed stochastic extension of ill-possed linear problems. J. Math. Analysis Applic., 31, 682-716. DOI: https://doi.org/10.1016/0022-247X(70)90017-X

GIRARDIN, N. y W. R. JACOBY, 1979. Rayleigh wave dispersion along Reykjanes Ridge. Tectonophysics, 55, 155-171. DOI: https://doi.org/10.1016/0040-1951(79)90339-1

HERRMAN, R. B., 1973. Some aspects of band-pass filtering of surface waves. Bull. Seism. Soc. Am., 63, 663-671. DOI: https://doi.org/10.1785/BSSA0630020663

JORDAN, T. H. y J. N. FRANKLIN, 1971. Optimal solutions to a linear inverse problem in Geophysics. Proc. Nat. Ac. Sci Am., 68, 291-293. DOI: https://doi.org/10.1073/pnas.68.2.291

KNOPOFF, L., 1969. Phase and group slowness in inhomogeneous media. J. Geophys. Res., 74, 1701. DOI: https://doi.org/10.1029/JB074i006p01701

LEEDS, A. R., L. KNOPOFF y E.G. KAUSEL, 1974. Variations of upper mantle structure under the Pacific Ocean. Science, 186, 141-143. DOI: https://doi.org/10.1126/science.186.4159.141

MITCHELL, B. J. y M. LANDISMAN, 1969. Electromagnetic seismograph constants by least-squares inversion. Bull. Seism. Soc. Am., 59, 1335-1348. DOI: https://doi.org/10.1785/BSSA0590031335

MITCHELL, B. J. y G. K. YU, 1980. Surface wave dispersion, regionalized velocity models, and anisotropy of the Pacific crust and upper mantle. Geophys. J. R. astr. Soc., 63, 497-514. DOI: https://doi.org/10.1111/j.1365-246X.1980.tb02634.x

OSSING, H. A., 1964. Dispersion of Rayleigh waves originating in the Mid-Atlantic ridge. Bull. Seism. Soc. Am., 54, 1137-1196. DOI: https://doi.org/10.1785/BSSA0540041137

PITMAN III, W. C., R. L. LARSON y E. M. HERRON, 1974. The age of the ocean basin. The New View of the Earth, page 89. W. H. Freeman and Co., San Francisco.

SAITO, M. y H. TAKEUCHI, 1966. Surface waves across the Pacific. Bull Seism. Soc. Am., 56, 1067-1091. DOI: https://doi.org/10.1785/BSSA0560051067

SOLOMON, S. C., 1973. Shear wave attenuation and partial melting beneath the Mid-Atlantic ridge. J. Geophys. Res., 78, 6044-6059. DOI: https://doi.org/10.1029/JB078i026p06044

WEIDNER, D. J., 1974. Rayleigh wave phase velocities in the Atlantic Ocean. Geophys. J. R. astr. Soc., 36, 105-139. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb03628.x

WIGGINS, R. A., 1972. The general linear inverse problem: Implication of surface waves and free oscillation for Earth structure. Rev. Geophys. and Space Phys., 10, 251-285. DOI: https://doi.org/10.1029/RG010i001p00251

YU, G. K. y B. J. MITCHELL, 1979. Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion. Geophys. J. R. astr. Soc., 57, 311-341. DOI: https://doi.org/10.1111/j.1365-246X.1979.tb04781.x