Noble gas solubility in super-critical water: implications for inert gas studies and geochronology

Main Article Content

J. G. Mitchell
D. J. Terrell

Abstract

Inert gases will ideally exhibit infinite miscibility with super-critical water. The implications of this phenomenon are discussed in the context of the resetting of the K-Ar system during regional metamorphism, and emplacement of granites. Inert gas abundances in oceanfloor rocks and shales may also be interpreted as a consequence (at least in part) of partioning between water and silicate phases in which the light inert gases are preferentially taken up in water. The function of super-critical water as a transport medium for inert gases offers an important alternative to the unlikely process ofvolume diffusion at low temperatures.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
13812
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Article Details

How to Cite
Mitchell, J. G., & Terrell, D. J. (1984). Noble gas solubility in super-critical water: implications for inert gas studies and geochronology. Geofisica Internacional, 23(4), 483–490. https://doi.org/10.22201/igeof.00167169p.1984.23.4.2174
Section
Article

References

ARONSON, J. R. and J. HOWER, 1976. Mechanism of burial meta-morphism of argillaceous sediment: 2. Radiogenic argon evidence. Geol. Soc. Am. Bull., 87, 738-744. DOI: https://doi.org/10.1130/0016-7606(1976)87<738:MOBMOA>2.0.CO;2

BERGER, R. and L. M. LIBBY (eds.), 1981. The publications of Wil-lard Frank Libby. Vol. VII, Talk 169(a) Crane Russak & Co., Inc., New York.

CLARK, S. P. (ed.), 1966. Handbook of Physical Constants. Geol. Soc. Am. Mem. 97. DOI: https://doi.org/10.1130/MEM97

DALRYMPLE, G. B. and J. G. MOORE, 1968. Argon 40: excess in submarine pillow basalts from Kilawai Volcano, Hawaii. Science, 161 : 1132-1135. DOI: https://doi.org/10.1126/science.161.3846.1132

DYMOND, J. and L. HOGAN, 1973. Noble gas abundance patterns in deep-sea basalts. Earth. Planet. Sci. Lett., 20, 131-139. DOI: https://doi.org/10.1016/0012-821X(73)90150-7

EDMOND, J. M., C. MEASURES, R. E. McDUFF, L. H. CHAN, R. COLLIER, B. GRANT, L. J. GORDON and J. B. CORLISS, 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth Planet. Sci. Lett., 46 : 1-18. DOI: https://doi.org/10.1016/0012-821X(79)90061-X

FYFE, W. S., M. A. LANPHERE and G. B. DALRYMPLE, 1969. Experimental introduction of excess 40Ar into a granitic melt. Contr. Min. Petrol., 23 : 189-193. DOI: https://doi.org/10.1007/BF00371532

FYFE, W. S., N. J. PRICE and A. B. THOMPSON, 1978. Fluids in the Earth 's Crust, Elsevier, Amsterdam.

HART, R., 1970. Chemical exchange between sea water and deep ocean basalts. Earth Planet. Sci. Lett., 9, 269-279. DOI: https://doi.org/10.1016/0012-821X(70)90037-3

HOWER, J., E. V. ESLINGER, M. E. HOWER and E. A. PERRY, 1976. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., 87, 725-737. DOI: https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2

MUSSETT, A. E., 1969. Diffusion measurements and potassium-argon method of dating. Geophys. J. R. Astr. Soc. 18, 257-303. DOI: https://doi.org/10.1111/j.1365-246X.1969.tb03569.x

PODOSEK, F. A., M. HONDA and M. OZIMA, 1980. Sedimentary noble gases. Geochim. et Cosmochim. Acta. 44, 1875-1884. DOI: https://doi.org/10.1016/0016-7037(80)90236-7

POWERS, M. C., 1967. Fluid-release mechanisms in compacting marine mud-rocks and their importance in oil exploration. Bull. Am. Assoc. Petrol. Geolog. 51, 1240-1254. DOI: https://doi.org/10.1306/5D25C137-16C1-11D7-8645000102C1865D

PRAY, H. A., C. E. SCHWEICKERT and B. H. MINNICH, 1952. Solubility of hydrogen, oxygen, nitrogen and helium in water at elevated temperatures. Ind. Eng. Chem. 44, 1146-1151. DOI: https://doi.org/10.1021/ie50509a058

SEIDEMAN, D., 1978. 40Ar/39 Ar studies of deep sea igneous rocks. Geochim. Cosmochim. Acta 42, 1721-1734. DOI: https://doi.org/10.1016/0016-7037(78)90258-2

TERRELL, D. J., S. PAL, M. LOPEZ and J. PEREZ, 1979. Rare earth elements in basalt samples, Gulf of California. Chem. Geol., 26, 267-275. DOI: https://doi.org/10.1016/0009-2541(79)90050-0

TERRELL, D. J. and J. G. MITCHELL, 1982. Inert gas contents of altered samples from Deep Sea Drilling Project holes 501, 504B and 505B, Costa Rica Rift, in Initial Reports DSDP 69, M. G. Langseth (ed.), (Washington U. S. Govt. Printing Office), 651-655. DOI: https://doi.org/10.2973/dsdp.proc.69.139.1983

TURNER, F. J., 1968. Metamorphic Petrology (McGraw-Hill, New York), 403 pp.

VERMA, S. P., 1981. Sea water alteration effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in oceanic igneous rocks. Chem. Geol., 34, 81-89 DOI: https://doi.org/10.1016/0009-2541(81)90073-5