Un método para modelar anomalías de resistividad y polarización inducida mediante potenciales logarítmicos.

Main Article Content

J. L. Comparan
A. Sánchez G.
E. Gómez Treviño

Abstract

The problem of modeling two-dimensional resistivity and induced polarization anomalies is posed in the following terms: it is assumed that the function of the source is logarithmic, that the body has a polygonal shape, and that the contrast in resistivity is low. This way of posing the problem leads to simple numerical solutions, and allows the study of bodies with complex geometrical shapes. Because the anomalies are computed by integrating an analytic function, the number of points required to define the bodies is minimized. Results are included to demonstrate both the validity of the method and its flexibility to handle arbitrary shaped bodies.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
12260
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Comparan, J. L., Sánchez G., A., & Gómez Treviño, E. (1989). Un método para modelar anomalías de resistividad y polarización inducida mediante potenciales logarítmicos. Geofisica Internacional, 28(1), 73–87. https://doi.org/10.22201/igeof.00167169p.1989.28.1.1017
Section
Article

References

BARNETT, C. T., 1972. Theoretical modeling of induced polarization effects due to arbitrarily shaped bodies. Unpublished Ph. D. thesis, Colorado School of Mines.

DIETER, K., N. R. PATERSON and F. S. GRANT, 1969. Induced polarization and resistivity type curves for three-dimensional bodies. Geophysics, 34, 615-632. DOI: https://doi.org/10.1190/1.1440035

FORSYTHE, G. E., M. A. MALCOLM and C. B. MOLER, 1977. Computer methods for mathematical computations. Prentice-Hall, Inc., Englewood Cliffs, N. J.

GOMEZ-TREVINO, E. and R. N. EDWARDS, 1979. Magnetometric resistivity (MMR) anomalies of two-dimensional structures. Geophysics, 44, 947-958. DOI: https://doi.org/10.1190/1.1440987

GOMEZ-TREVINO, E., 1984. Soluciones asintóticas para el problema directo de resistividad y polarización inducida. Informe semestral de investigación (inédito), FCFM, UANL.

GRANT, F. S. and G. F. WEST, 1965. Interpretation theory in applied geophysics. McGraw-Hill Book Co., N. Y.

KIYONO, T., 1950. Theoretical study of the ground resistivity method of electrical prospecting. Kyoto Univ. Faculty. Eng., Mem., 12, 29-59. Resistivity GA12051.

ROY, A., and S. JAIN, 1961. A simple integral transform and its application to some problems in geophysical prospecting. Geophysics, 26, 229-241. DOI: https://doi.org/10.1190/1.1438865

SEIGEL, H. O., 1959. Mathematical formulation and type curves for induced polarization. Geophysics, 24, 547-563. DOI: https://doi.org/10.1190/1.1438625

SNYDER, D. D., 1976. A method for modeling the resistivity and induced polarization responses of two-dimensional bodies. Geophysics, 41, 997-1015. DOI: https://doi.org/10.1190/1.1440677

TALWANI, M., J. L. WORZEL and M. LANDISMAN, 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino Submarine Fracture Zone. J. Geophys. Res., 64, 49-59. DOI: https://doi.org/10.1029/JZ064i001p00049

VAN NOSTRAND, R. G. and K. L. COOK, 1966. Interpretation of resistivity data. USGS Professional paper 499, US Gov. Print. Office, Washington. DOI: https://doi.org/10.3133/pp499