An intercomparison of the thermal emission fields for the planets

Main Article Content

K. Ya. Kondratyev
N. I. Moscalenko

Abstract

A comparison of the thermal emission fields of the Earth. Mars, Venus and Jupiter is presented. The calculation methods used take into account the real chemical composition of the atmosphere and the atmospheric conditions for the different planets studied. Thermal emission fields are obtained for clear, turbid and cloudy atmospheres. The calculations take into account sphericity, atmospheric refraction, selectivity of the downward radiation reflected by the underlying surface and clouds and selectivity of radiation scattered by aerosol for low and moderate resolutions, considering the effect of all gaseous components on radiation transfer. 
The results obtained and the conclusions drawn reveal the general regularities and specific features of the formation of the planets' thermal emission.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
15382
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Article Details

How to Cite
Kondratyev, K. Y., & Moscalenko, N. I. (1980). An intercomparison of the thermal emission fields for the planets. Geofisica Internacional, 19(3), 169–211. https://doi.org/10.22201/igeof.00167169p.1980.19.3.884
Section
Article

References

BOESE, R. W., F. B. POLLACK, P. M. SILVAGGIO, 1979. First results from the large probe infrared radiometer experiment, Science, vol. 203, p. 797-802. DOI: https://doi.org/10.1126/science.203.4382.797

COOK, W. S., 1973. Engineering models for Jupiter's troposphere and NH3-H2O cloud system. AIAA Pap., No. 129, 7 pp. DOI: https://doi.org/10.2514/6.1973-129

FIOCCO, G., G. GRAINS, A. NUGNAI, 1976. Energy exchange and temperature of aerosols in the Earth's atmosphere (0-60 km). J. Atmos. Sci., vol. 34, No.7. p.125-134. DOI: https://doi.org/10.1175/1520-0469(1976)033<2415:EEATOA>2.0.CO;2

HARRISON, A. W., 1976. Atmospheric thermal emission 7-15 μm. Canad. J. Phys. vol. 54, No. 14, p. 1442-1448. DOI: https://doi.org/10.1139/p76-170

KELDYSH, M. V., 1977. Venus exploration with the Venera 9 and 10 spacecraft. Icarus, vol. 30, No. 4, p. 605-625. DOI: https://doi.org/10.1016/0019-1035(77)90085-9

KNOLLENBERG, R. G., D. M. HUNTEN, 1979. Clouds of Venus particle size distribution measurements. Science, vol. 203, p. 792-795. DOI: https://doi.org/10.1126/science.203.4382.792

KONDRATYEV, K. Ya., H. Yu. NIYLISK, R. Yu. NOORMA, 1966. On spectral distribution of radiative heat flux divergences in a free atmosphere. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 2, No. 2, p.121-136 (in Russian).

KONDRATYEV, K. Ya., A. M. BUNAKOVA, 1973. Some specific features of the outgoing thermal emission fields in the atmosphere of Mars and Venus. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, Vol. 9, No. 3, p. 247-253 (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, 1974. Basic features of the thermal emission fields' formation on Jupiter. Doklady of the USSR Acad. Sci, vol. 219, No. 5. p. 1089-1091 (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, 1975. Meteorology of Jupiter. Progress in Science and Technology. Studies in Space, vol. 7, p. 99-153 (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, 1975. Spectral and Spatial structure of the thermal emission field in turbid atmosphere of Mars. Doklady of the USSR Acad. Sci., vol. 224, p. 3-20 (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, 1975. Analysis of the approximation technique for calculation of the planetary thermal emission fields. Trudy GGO, issue 363, p. 3-20 (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, 1976. Spectral and spatial structure of the thermal emission in the above-cloud atmosphere of Jupiter. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, Vol. 12, No. 2, p. 135-143 (in Russian).

KONDRATYEV, K. Ya., 1976. Meteorology of Venus. Progress in Science and Technology, Studies in Space, vol. 7, p. 8-98 (in Russian).

KONDRATYEV, K. Ya., 1977. Meteorology of Planets. Leningrad State Univ. Publ. House, Leningrad, 264 pp. (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, V. F. TERZI, 1977. Radiative cooling in the atmospheres of Mars, Venus, Jupiter. Doklady of the USSR Acad. Sci., vol 236, No. 6, p. 1334-1337 (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, 1977. Thermal emission of planets. Leningrad, Gidrometeoizdat, 263 pp. (in Russian).

KONDRATYEV, K. Ya., N. I. MOSCALENKO, F. S. YAKUPOVA, 1979. Numerical modelling of the thermal emission transfer in the atmospheres of Venus and Mars. Doklady of the USSR Acad. Sci., vol. 244, No. 6, p. 1334-1336 (in Russian).

KUZMIN, A. D., M. Ya. MAROV, 1974. Physics of the planet Venus. Moscow, Nauka Publ. House, 408 pp. (in Russian).

MOROZ, V. I., 1978. Physics of the planet Mars. Moscow, Nauka Publ. House (in Russian).

MOSCALENKO, N. I., 1969. Spectral transmission function for water vapor, CO2, O3, N2O, N2 components in the atmosphere. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 5, No. 11, p. 1179-1190 (in Russian).

MOSCALENKO, N. I., S. O. MIRUMYANTS, 1970. Calculation technique for spectral absorption of the i.r. radiation by atmospheric gases. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 6, No. 11, p. 1110-1126 (in Russian).

MOSCALENKO, N. I., A. R. ZAKIROVA, 1972. Calculation of the spectral, angular and vertical distribution of the thermal emission field of the surface and atmosphere of Earth, Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 8, No. 8. p. 828-842 (in Russian).

MOSCALENKO, N. I., 1975. Specific features of the spectral and spatial distributions of the thermal emission fields in the atmosphere of Mars. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 11, No. 8, p. 836-844 (in Russian).

MOSCALENKO, N. I., I 975. On the effect of the atmospheric aerosol on spectral and angular distribution of the thermal emission. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 11, No. 12, p. 1254-1262 (in Russian).

MOSCALENKO, N. I., 1975. On the effect of stratified atmosphere and clouds on the spectral, angular and vertical distribution of longwave radiation. lzvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean. vol. 11, No. 3, p. 245-256 (in Russian).

MOSCALENKO, N. I., A. R. ZAKIROVA, 1975. Calculation of the spectral, angular and vertical distribution of the longwave radiation in the above-cloud atmosphere of Venus. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 11, No. 6, p. 599-609 (in Russian).

MOSCALENKO, N. I., 1976. On spectral structure and spatial distribution of the thermal emission in the sub-cloud atmosphere of Venus. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 12, No. 12, p. 1277-1285 (in Russian).

MOSCALENKO, N. I., O. V. ZOTOV. 1977. New experimental studies and specification of the CO2 spectral transmission function: parameters of Lines. lzvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 13, No. 5, p. 488-498 (in Russian).

MOSCALENKO, N. I. et al., 1978. Study of the absorption spectra for sulphuric gas in the i.r. spectral region. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol 14, No. 12, p. 1275-1282 (in Russian).

MOSCALENKO, N. I., F. S. YAKUPOVA, 1978. Solution for the problems of radiation transfer in the atmosphere by computer numerical modelling. In the book: "Abstracts of Papers of the 4th All-Union Symposium on Molecular Spectroscopy of High and Superhigh Resolution", Novosibirsk, p. 178-182 (in Russian).

MOSCALENKO, N. I., Yu. A. ILYIN, S. N. PARSHIN, L. V. RODIONOV. 1979. Pressure-induced absorption of emission in atmospheres. Izvestia of the USSR Acad. Sci. Physics of the Atmosphere and Ocean, vol. 15, No. 9. p. 912-919 (in Russian).

MOSCALENKO, N. I., Y. F. TERZI, 1979. Construction of closed models of optical characteristics of the atmospheric aerosol. In the book: "Abstracts of Papers of the 5th All-Union Symposium on Laser Emission Propagation in the Atmosphere", Tomsk, p. 49-53 (in Russian).

ORTON, G. S., 1975. The thermal structure of Jupiter. I. Implications of Pioneer 10 infrarred radiometer data. Icarus, vol. 26, No. 2, p. 125-141. DOI: https://doi.org/10.1016/0019-1035(75)90075-5

ORTON, G. S., 1975. The thermal structure of Jupiter. II. Observations and analysis of 8-14 micron radiation. Icarus, vol. 26, No. 2, p. 142-158 DOI: https://doi.org/10.1016/0019-1035(75)90076-7

TOON, O. B., J. B. POLLACK, C. SAGAN, 1977. Physical properties of the particles composing the Martian dust storm of 1971-1972. Icarus, vol. 30. No. 4, p. 663-696. DOI: https://doi.org/10.1016/0019-1035(77)90088-4