Distribución de Q en una región del Pacífico > 90 M.A. a partir del análisis de los modos fundamental y superiores de las ondas de Rayleigh

Main Article Content

J. A. Canas

Abstract

Vertical multi-mode analysis of Rayleigh waves in a region of the Pacific~ 90 M.y. leads to a Qβ-1 distribution for this region up to a depth of the order of 500 km. Comparison of the obtained results in this study with a previous model for a region of the Pacific > 100 M.y. (Canas and Mitchell, 1978), indicate that the new model presents low Qβ-1 values for depths between 200 km and 300 km. It seems also that values of the new model for depth larger than 300 km would be lower than the ones corresponding to the model of Canas and Mitchell (1978).The procedure has been the following: a) Determination of phase and group velocities of Rayleigh waves; b) corrections due to anelasticity applied to the velocity data; c) determination of the shear-velocity model by application of inversion methods to the velocity data corrected by the effects due to anelasticity; d) determination of the theoretical amplitude spectras corresponding to the fundamental and to the addition of the higher modes, and e) Qβ determination obtained from the comparison of the theoretical and observed spectras.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
14743
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Canas, J. A. (1982). Distribución de Q en una región del Pacífico > 90 M.A. a partir del análisis de los modos fundamental y superiores de las ondas de Rayleigh. Geofisica Internacional, 21(2), 113–138. https://doi.org/10.22201/igeof.00167169p.1982.21.2.907
Section
Article

References

ANDERSON, D. L., A. BEN-MENAHEM y C. B. ARCHAMBEAU, 1965. Attenuation of seismic energy in the upper mantle. J. Geophys. Res., 70, 1441-1448. DOI: https://doi.org/10.1029/JZ070i006p01441

ANDERSON, D. L. y J. B. MINSTER. 1981. The physics of creep and attenuation in the mantle (preprint). DOI: https://doi.org/10.1029/GD004p0005

BACKUS, G. E. y F. GILBERT, 1967. Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc. 13, 247-276. DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02159.x

BACKUS, G. E. y F. GILBERT, 1968. The resolving power of gross Earth data. Geophys. J. R. Astron. Soc., 16, 169-205. DOI: https://doi.org/10.1111/j.1365-246X.1968.tb00216.x

BACKUS, G. E. y F. GILBERT, 1970. Uniqueness in the inversion of innacurate gross Earth data. Philos. Trans. R. Soc., A266, 123-192. DOI: https://doi.org/10.1098/rsta.1970.0005

BRAVO, C. y A. UDIAS, 1974. Rayleigh wave group velocity dispersion in North Atlantic region. Geophys. J. R. Astron. Soc., 37, 297-304. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb01240.x

BRUNE, J. N., J. E. NAFE y L. E. ALSOP, 1961. The polar shift of surface waves on a sphere. Bull. Seism. Soc. Am., 51, 247-257. DOI: https://doi.org/10.1785/BSSA0510020247

CANAS, J. A., 1978. Modelos regionalizados de la litosfera y astenosfera del Océano Pacífico deducidos a partir de la inversión de las velocidades de las ondas superficiales y de los coeficientes de atenuación. Tesis Doctoral. Universidad de Barcelona (España).

CANAS, J. A., 1981a. Modelo de Q-1 para el Este del Océano Pacífico. Anales de Física, (Serie B), 77, 101-107.

CANAS, J. A., 1981b. Attenuation of Love and Rayleigh waves across the Atlantic. J. Phys. Earth, 29, 119-129. DOI: https://doi.org/10.4294/jpe1952.29.119

CANAS, J. A. y B. J. MITCHELL, 1978. Lateral variation of surface-wave anelastic attenuation across the Pacific. Bull. Seism. Soc. Am., 68, 1637-1650.

CANAS, J. A. y A. UDIAS, 1980. Variación lateral de las velocidades de las ondas de cizalla en función de la edad del suelo oceánico del Pacífico. Anales de Física, 76, 278-284.

CANAS, J. A. y A. CORREIG, 1980. Modelo de fricción interna de las ondas de cizalla para las placas Nazca-Cocos. Geofísica Internacional, 19, 95-108. DOI: https://doi.org/10.22201/igeof.00167169p.1980.19.2.880

CANAS, J. A., B. J. MITCHELL y A. M. CORREIG, 1980. Q-1ß models for the East Pacific Rise and the Nazca Plate in Mechanisms of Continental Drift and Plate Tectonics, eds. P. A. Davies and S. K. Runcorn, 123-133, Academic Press, London.

CANAS, J. A. y B. J. MITCHELL, 1981. Rayleigh wave attenuation and its variation across the Atlantic Ocean. Geophys. J. R. Astron. Soc., 67, 159-176. DOI: https://doi.org/10.1111/j.1365-246X.1981.tb02739.x

CROSSON, R. S., 1976. Crustal structure modeling of earthquake data 1, simultaneous least squares estimation of hypocenter. J. Geophys. Res., 81, 3036-3046. DOI: https://doi.org/10.1029/JB081i017p03036

CHENG, C. C. y B. J. MITCHELL, 1981. Crustal Q structure in the United States from multi-mode surface waves. Bull. Seism. Soc. Am., 71, 161-181.

DER, Z. A., R. MASSE y M. LANDISMAN, 1970. Effects of observational errors on the resolution of surface waves at intermediate distances, J. Geophys. Res., 75, 3399-3409. DOI: https://doi.org/10.1029/JB075i017p03399

DZIEWONSKI, A., y A. L. HALES, 1972. Numerical analysis of dispersed seismic waves, in Methods in Computational Physics, 11, 39-85, ed. B. A. Bolt, Academic Press, Nueva York. DOI: https://doi.org/10.1016/B978-0-12-460811-5.50007-6

DZIEWONSKI, A., S. BLOCH y M. LANDISMAN, 1969. A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., 59, 427-444. DOI: https://doi.org/10.1785/BSSA0590010427

FORSYTH, D. W., 1975a. A new method for the analysis of multimode surface wave dispersion. Application to Love wave propagation in the East Pacific. Bull. Seism. Soc. Am., 65, 323-342. DOI: https://doi.org/10.1785/BSSA0650020323

FORSYTH, D. W., 1975b. The early structural evolution and anisotropy of the oceanic upper mantle, Geophys. J. R. Astron. Soc. 43, 103-162. DOI: https://doi.org/10.1111/j.1365-246X.1975.tb00630.x

FRANKLIN, J. N., 1970. Well-possed stochastic extension of ill-possed linear problems, J. Math. Analysis Applic., 31, 682-716. DOI: https://doi.org/10.1016/0022-247X(70)90017-X

GIRARDIN, N. y W. R. JACOBY, 1979. Rayleigh wave dispersion along Reykjanes Ridge. Techtonophysics, 55, 155-171. DOI: https://doi.org/10.1016/0040-1951(79)90339-1

HART, R. S. y F. PRESS, 1973. Sn velocities and the composition of the lithosphere in the regionalized Atlantic. J. Geophys. Res., 78, 407-411. DOI: https://doi.org/10.1029/JB078i002p00407

HERRMANN, R. B., 1973. Some aspects of band-pass filtering of surface waves. Bull. Seism. Soc. Am., 63, 663-671. DOI: https://doi.org/10.1785/BSSA0630020663

HERRMANN, R. B., 1974. Surface wave generation by Central United States earthquakes. Ph. D. Dissertation. Saint Louis University (USA).

JACKSON, D. F., 1972. Interpretation of inaccurate, insufficient, and inconsistent data. Geophys. J. Roy. Astron. Soc., 28, 97-109. DOI: https://doi.org/10.1111/j.1365-246X.1972.tb06115.x

JORDAN, T. H. y J. N. FRANKLIN, 1971. Optimal solutions to a linear inverse problem in geophysics. Proc. Nat. Acad. Sci. Am., 68, 291-293. DOI: https://doi.org/10.1073/pnas.68.2.291

JORDAN, T. H. y D. L. ANDERSON, 1974. Earth structure from free oscillation and travel times. Geophys. J. R. Astron. Soc., 36, 411-459. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb03648.x

KANAMORI, H. y D. L. ANDERSON, 1977. Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys. Space Phys., 15, 105-112. DOI: https://doi.org/10.1029/RG015i001p00105

KAUSEL, E. G., A. R. LEEDS y L. KNOPOFF, 1974. Variations of Rayleigh wave phase velocities across the Pacific Ocean. Science, 186, 139-141. DOI: https://doi.org/10.1126/science.186.4159.139

LEEDS, A. R., L. KNOPOFF y E. G. KAUSEL, 1974. Variations of upper mantle structure under the Pacific Ocean. Science, 186, 141-143. DOI: https://doi.org/10.1126/science.186.4159.141

LEVSHIN, A. L. y Z. A. YANSON, 1971. Surface waves in vertically and radially inhomogeneous media, in Algorithms for the Interpretation of Seismic Data (Vol. 5 of the series Computational Seismology, V. I. Keilis-Borok, Editor) Nauka Press, Moscow 147-177. (English translation by R. 8. Herrmann, St Louis University).

LIU, H., D. L. ANDERSON y H. KANAMORI, 1976. Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophys. J. R. Astron. Soc., 47, 41-58. DOI: https://doi.org/10.1111/j.1365-246X.1976.tb01261.x

MINSTER, J. 8., 1978. Transient and impulse responses of a one-dimensional linearly attenuating medium-II. A parametric study. Geophys. J. R. Astron. Soc., 52, 503-524. DOI: https://doi.org/10.1111/j.1365-246X.1978.tb04246.x

MITCHELL, B. J., 1975. Regional Rayleigh wave attenuation in North America. J. Geophys. Res., 80, 4904-4916. DOI: https://doi.org/10.1029/JB080i035p04904

MITCHELL, B. J., 1976. Anelasticity of the crust and upper mantle beneath the Pacific Ocean from the inversion of observed surface wave attenuation. Geophys. J. R. Astron. Soc., 46, 521-533. DOI: https://doi.org/10.1111/j.1365-246X.1976.tb01246.x

MITCHELL, B. J. y M. LANDISMAN, 1969. Electromagnetic seismograph constants by least-squares inversion. Bull. Seism. Soc. Am., 59, 1335-1348. DOI: https://doi.org/10.1785/BSSA0590031335

MITCHELL, B. J. y R. B. HERRMANN, 1979. Shear velocity structure in the Eastern United States from the inversion of surface-wave group and phase velocities. Bull. Seism. Soc. Am. 69, 1133-1148. DOI: https://doi.org/10.21236/ADA067309

MITCHELL, B. J. y G. K. YU, 1980. Surface wave dispersion, regionalized velocity models, and anisotropy of the Pacific crust and upper mantle. Geophys. J. R. Astron. Soc., 63, 497-514. DOI: https://doi.org/10.1111/j.1365-246X.1980.tb02634.x

OSSING, H. A., 1964. Dispersion of Rayleigh waves originating in the Mid-Atlantic Ridge. Bull. Seism. Soc. Am., 54, 1137-1196. DOI: https://doi.org/10.1785/BSSA0540041137

RODI, W. L., P. G. GLOVER, T. M. C. LI y S. S. ALEXANDER, 1975. A fast, accurate method for computing group velocity partial derivatives for Rayleigh and Love modes. Bull. Seism. Soc. Am., 65, 1105-1114. DOI: https://doi.org/10.1785/BSSA0650051105

SIPKIN, S. y T. JORDAN, 1979. Frequency dependence of Q. Bull. Seism. Soc. Am., 69, 1055-1079.

SOLOMON, S. C., 1973. Shear wave attenuation and melting beneath the Mid-Atlantic ridge. J. Geophys. Res., 78, 6044-6059. DOI: https://doi.org/10.1029/JB078i026p06044

STAUDER, W. y L. MUALCHIN, 1976. Fault motion in the larger earthquakes of the Kuril-Kamchatka arc and of the Kuril-Hokkaido Comer. J. Geophys. Res., 81, 297-308. DOI: https://doi.org/10.1029/JB081i002p00297

WEIDNER, D. J., 1974. Rayleigh wave phase velocities in the Atlantic Ocean. Geophys. J. R. Astron. Soc., 36, 105-139. DOI: https://doi.org/10.1111/j.1365-246X.1974.tb03628.x

WIGGINS, R. A., 1972. The general linear inverse problem: Implication of surface waves and free oscillation for Earth structure. Rev. Geophys. and Space Phys., JO, 251-285. DOI: https://doi.org/10.1029/RG010i001p00251

YOSHII, T., 1975. Regionality of group velocities of Rayleigh waves in the Pacific and thickening of the plate. Earth Planet. Sci. Lett., 25, 305-312. DOI: https://doi.org/10.1016/0012-821X(75)90246-0

YU, G. K., 1978. Regionalized shear velocity models beneath the Pacific Ocean from Love and Rayleigh wave dispersion. Ph. D. Dissertation, Saint Louis University.

YU, G. K. y B. J. MITCHELL, 1979. Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion. Geophys. J. R. Astron. Soc., 5 7, 311-341. DOI: https://doi.org/10.1111/j.1365-246X.1979.tb04781.x