On the theoretically predicted flux profiles over polar caps and their comparison with observations
Main Article Content
Abstract
A method for constructing theoretical latitudinal profiles of solar proton fluxes over polar caps is proposed. It is based on transfer functions between the interplanetarv medium and the detector in polar orbiting satellite and on information obtained from simulation of 2 to 500 MeV proton orbits in magnetospheric models. The method takes into account the dependence of flux profiles on local time of observation, on seasonal or storm changes in tail topology and on the whole spectrum of energies registered by detector's channel. Comparison with observations allow a more rigorous analysis than the one achieved by methods used in the past, permits a more detailed identification of regions of entry and an interpretation of some fine features of the observed flux structures.Theoretical profiles for higher energy channels constructed for th anisotropic phase of February 25, 1968 and November 18, 1969 events agree satisfactorily with the observations and with our model of uneven illumination and leads to postulate a turning mechanism that operates in the tail boundary region. For lower energies the comparison between predicted and observed structures indicates the influence of strong modulating mechanisms. The method when applied to a large number of selected observations in different energy channels allows an improved sensitivity of the technique of tracing the topology of the geomagnetic cavity and of its boundary region by means of solar protons.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
BALOGH, A., and R. J. HYNDS, 1970. "Low Energy Proton Measurements in Interplanetary Space on Board the Heos-1 Satellite", (eds.), V Manno and D. E. Page, in Intercorrelated Satellite Observations Related to Solar Events, D. Reidel Publ. Co. Dordrecht, Holland. p. 471. DOI: https://doi.org/10.1007/978-94-010-3278-0_35
COOPER, W. A., and G. P. HASKELL, 1962. Anistropy of Low-Energy Solar Protons at the Boundary of the Magnetotail, J. Geophys. Res. 77, 6849. DOI: https://doi.org/10.1029/JA077i034p06849
DURNEY, A. C., G. MORFILL and J. J. QUENBY, 1972, Entry of High-Energy Solar Protons into the Distant Geomagnetic Tail, J. Geophys. Res., 77, (19) : 3345-3360. DOI: https://doi.org/10.1029/JA077i019p03345
ENGEL, A. R., 1970 "The Solar Particle Event of 25 February, 1969", (eds.), V. Manno and D. E. Page, in Intercorrelated Satellite Observations Related to Solar Events, D. Reidel Publ. Co. Dordrecht, Holland. p. 478. DOI: https://doi.org/10.1007/978-94-010-3278-0_36
ENGELMANN, J., R. J. HYNDS, G. MORFILL, F. AXISA, A. BEWICK, A. C. DURNEY, and L. KOCH, 1971. Penetration of Solar Protons over the Polar Cap during the February 25, 1969, Event, J. Geophys. Res., 76, (19) : 4245-4261. DOI: https://doi.org/10.1029/JA076i019p04245
EVANS, L. C., 1972. Magnetospheric Access of Solar Particles and Configuration of the Distant Geomagnetic field, Ph. D. Thesis. Calif. Inst. of Tech., Pasadena.
GALL, R., and S. BRAVO, 1970. Geostationary Satellites and the Anisotropies of Cosmic-Ray Propagation in the Interplanetary Medium, J. Geophys. Res. 75, 7284. DOI: https://doi.org/10.1029/JA075i034p07284
GALL, R., S. BRAVO, and A. OROZCO, 1972. Model for the Uneven illumination of Polar Caps by Solar Protons, J. Geophys. Res., 77, (28) : 5360-5373. DOI: https://doi.org/10.1029/JA077i028p05360
GALL, R., S. BRAVO, I 973. The Role of the Neutral Sheet in the Illumination of Polar Caps by Solar Protons, J Geophys. Res., 78, 6773. DOI: https://doi.org/10.1029/JA078i028p06773
GALL, R., and A. OROZCO, 1974. Review on the Usage of Magnetospheric Model, J. Geophys. Res., 79, 293. DOI: https://doi.org/10.1029/JA079i001p00293
GALL, R., S. BRAVO, 1974. "On a Model of Propagation of 5-300 MeV Protons in the Earth Magnetic Cavity" in Corrolated Interplanetary and Magnetospheric Observations (ed.) D. E. Page, D. Reidel Publ. Co. Dordrecht, Holland. DOI: https://doi.org/10.1007/978-94-010-2172-2_27
HASKEL, G. P., and R. J. HYNDS, 1972. Mechanism for the Injection of Protons into the Magnetosphere, Earth's Magnetospheric Processes, Edited by B. M. McCormac., D. Reidel Publ. Co. Dordrecht, Holland, 81. DOI: https://doi.org/10.1007/978-94-010-2896-7_7
IMHOF, W. L., J. B. REAGAN, and E. E. GAINES, 1971. Solar Particle Cutoffs as Observed at Low Altitudes, J. Geophys. Res., 76, 4276. DOI: https://doi.org/10.1029/JA076i019p04276
ISRAEL, M. H., and R. E. VOGT, 1969. Characteristics of the Diurnally Varying Electron Flux near the Polar Cap, J. Geophys, Res., 74, 4714. DOI: https://doi.org/10.1029/JA074i019p04714
JAKEWAYS, R., P. L. MARSDEN, and J. R. CALDER, 1970. Observations recorded by the Leeds University Cosmic Ray Detector on Board the ESRO II Spacecraft during the Solar Flare of February 25th, 1969, in Intercorrelated Satellite Observations Related to Solar Events, (eds.), V. Manno and D. E. Page, D. Reidel Publ. Co. Dordrecht, Holland p. 486. DOI: https://doi.org/10.1007/978-94-010-3278-0_37
KOHL, W., S. M. KRIMIGIS and E. T. SARRIS (AGU 1974 San Francisco) Energy Spectra and Comparation of Proton Bursts at 35 RE.
LUHMANN, G. J., and G. A. CARL, 1973. Solar and Geomagnetic Modulation of Low Energy Secondary Cosmic Ray Electrons, J. Geophys. Res., 78, 1502. DOI: https://doi.org/10.1029/JA078i010p01502
MEAD, D. G., and D. H. FAIRFIELD, 1972. Two Quantitative Magnetospheric Models Derived from Satellite Magnetometer Data, Transactions, American Geophysical Union, Volume 53, Number 11, p. 1099.
MICHELL, F. C., and A.J. DESSLER, 1970. Diffusive Entry of Solar-Flare Particles into Geomagnetic Tail, J. Geophys. Res., 75, 6061. DOI: https://doi.org/10.1029/JA075i031p06061
MONTGOMERY, M. D., and S. SINGER. 1969. Penetration of Solar Energetic Protons into the Magnetotail, J. Geophys. Res., 74, 2869. DOI: https://doi.org/10.1029/JA074i011p02869
MORFILL, G., and J. J. QUENBY, 1971. The Entry of Solar Protons over the Polar Caps, Planet. Space Scie., 19, 1541-1577. DOI: https://doi.org/10.1016/0032-0633(71)90013-4
MORFILL, G., and M. SCHOLER, 1973. Uneven Illumination of the Polar Caps by Solar Protons: Comparison of Different Particle Entry Models, J. Geophys. Res., 78, (25) : 5449-5462. DOI: https://doi.org/10.1029/JA078i025p05449
PAULIKAS, G. A., 1974. Tracing of High-Latitude Magnetic Field Lines by Solar Particles, Reviews of Geophysics and Space Physics, 12, 117-128. DOI: https://doi.org/10.1029/RG012i001p00117
SMART, D. F., M. A. SHEA and R. GALL, 1969. The Daily Variation of Trajectory-Derived High-Latitude Cutoff Rigidities in a Model Magnetosphere. J. Geophys. Res., 74, 4731. DOI: https://doi.org/10.1029/JA074i019p04731
STONE, E. C., 1964. Local Time Dependence of Non-Stormer Cutoff of 1.5 MeV Protons in Quiet Geomagnetic Field, J. Geophys. Res., 69, 3577. DOI: https://doi.org/10.1029/JZ069i017p03577
THOMAS, G. R., D. M. WILLIS, and R. J. PRATT, 1974. Comparison of Solar Proton Trajectory Computations Using Model Magnetospheres. (ed.) D. E. Page in Corrolated Interplanetary and Magnetospheric Observations, B. Reidel Publ. Co. Dordrecht, Holland. pp. 449-461. DOI: https://doi.org/10.1007/978-94-010-2172-2_28
WILLIAMS, D. J., and G. D. MEAD, 1965. Night Side Magnetosphere Configurations as Obtained from Trapped Electrons at 1100 Kilometers, J. Geophys. Res., 70, 3017. DOI: https://doi.org/10.1029/JZ070i013p03017